A novel technique called physical frame time-slot switching (PFTS) is discussed and its technical and application aspects are analyzed. The format of the ethernet media access control (MAC) frame is borrowed in de...A novel technique called physical frame time-slot switching (PFTS) is discussed and its technical and application aspects are analyzed. The format of the ethernet media access control (MAC) frame is borrowed in defining the physical frame for PFTS and the transmission time for the maximum size of the MAC frame is defined as a physical frame time-slot (PFT). Consequently, user data can be fed into PFTS and switched in a single layer sub-network in an asynchronous mode.展开更多
文摘单层用户交换平台体系结构(Single-layer User-data switching Platform Architecture,SUPA)是基于面向以太网的物理帧时槽交换(Ethernet-oriented Physical Frame Timeslot Switching,EPFTS)技术的一种未来Internet体系结构。研究了SUPA用户平台的OAM(Operation and Management or Operation,Administration and Maintenance)机制,以支持SUPANET域内的连通性诊断、故障诊断和故障恢复等功能。基于SUPA虚线路交换(Virtual Line Switc-hing,VLS)服务,重点研究了基于OAM的保护交换机制。最后,基于QVL(QoS Virtual Line)和SVL(Shared VirtualLine)服务,仿真比较了SUPA用户平台中基于OAM的故障恢复的保护效果,验证了基于QVL的保护交换比基于SVL的保护交换具有更好的QoS保障能力。
基金Supported by National Natural Science Foundation of China (No. 60372065)
文摘A novel technique called physical frame time-slot switching (PFTS) is discussed and its technical and application aspects are analyzed. The format of the ethernet media access control (MAC) frame is borrowed in defining the physical frame for PFTS and the transmission time for the maximum size of the MAC frame is defined as a physical frame time-slot (PFT). Consequently, user data can be fed into PFTS and switched in a single layer sub-network in an asynchronous mode.