This study explored how mental health professionals collaborate with peer supporters with mental disabilities in a community mental health institution.From January 19 to February 23,2021,three 60 min interviews were c...This study explored how mental health professionals collaborate with peer supporters with mental disabilities in a community mental health institution.From January 19 to February 23,2021,three 60 min interviews were conducted with six mental health professionals working at a Korean community center.The results were qualitatively analyzed and divided into four themes and eight categories.The four themes were the perceptions of and challenges in working with peer supporters with mental disabilities,conflict and confusion about working with peer supporters,forming partnerships with peer supporters,and policy support for peer supporters’job security.Participants reported vague anxiety about working with a peer supporter and difficulties with the trial-and-error process of adjusting to the role as challenging.Over time,however,they realized that they needed to make an effort to develop meaningful relationships with peer supporters and mental health professionals.Thus,through this study,we realized that there was a need to improve the system,such as building infrastructure for job stability for peer support workers and capacity building tailored to the mental disorders.Although peer supporters play various roles while working with mental health professionals,this study showed the possibility of mutual growth through communication and cooperation.These findings will help prepare systems necessary for collaboration between the two teams amidst the increasing institutionalization of peer support for mental disorders.展开更多
A new catalyst support, Ce-Mg-O, was prepared in a novel way macromolecule surfactant modified method and was used as a catalyst support for low-temperature methane combustion. The results indicate that the new type o...A new catalyst support, Ce-Mg-O, was prepared in a novel way macromolecule surfactant modified method and was used as a catalyst support for low-temperature methane combustion. The results indicate that the new type of FeOx/Ce- Mg-O catalyst exhibits high activity in low-temperature methane combustion, such that the T90 at which 90% conversion of methane occurs can be obtained at 560 ℃. The structure of the catalyst and the effect of the supporter on catalytic activity were characterized by transmission electronic microscopy (TEM), X-ray diffraction (XRD), and temperature-programmed reduction (TPR). The results indicate that the high catalytic activity of FeOx/Ce-Mg-O over methane combustion is strongly dependent on the particle size, typical crystal phase of the Ce-Mg-O, and the interaction of FeOx and Ce-Mg-O.展开更多
Background: This study assessed treatment interruption of tuberculosis (TB) patients managed by treatment supporters and health care workers and other predictors of treatment interruption. Methods: A descriptive cross...Background: This study assessed treatment interruption of tuberculosis (TB) patients managed by treatment supporters and health care workers and other predictors of treatment interruption. Methods: A descriptive cross-sectional study was conducted. Four hundred and seventy new smear positive TB patients above 14 years of age were consecutively recruited between October 1 and December 31 2012 from 34 (23 public and 11 private) directly observed treatment short course (DOTS) facilities that offered TB treatment and microscopy services. They were followed up till treatment was completed. Logistic regression was used to assess the predictors of treatment interruption. Results: A significantly higher proportion of smokers (58.6% vs 38.3%, p = 0.030), patients supervised by treatment supporters (44.4% vs 34.7%, p = 0.032), patients not counselled before initiation of treatment (55.6% vs 38.2%, p = 0.041), patients managed at private DOTS facilities (50% vs 36.3%, p = 0.010) and TB/HIV co-infected patients (54.2% vs 38.6%, p = 0.038) had treatment interruption. Predictors of treatment interruption were supervision by treatment supporters, smoking, lack of pre-treatment counselling and TB/HIV co-infection. Conclusion: A higher proportion of patients supervised by treatment supporters had treatment interruption than those supervised by health care workers. There may be a need to review the concept of treatment supervision by treatment supporters in Lagos state Nigeria.展开更多
Beloved and A Mercy are widely regarded as a companion piece to each other.This thesis intends to employ Gerard Genette’s narrow-sense intertextuality to study Two Black male Characters in Beloved&A Mercy:Paul D&...Beloved and A Mercy are widely regarded as a companion piece to each other.This thesis intends to employ Gerard Genette’s narrow-sense intertextuality to study Two Black male Characters in Beloved&A Mercy:Paul D&the Blacksmith.It is hoped that this thesis will reveal the deep concern of Morrison not only for the future of women of her own race,but also for the black men.And by the creation of Paul D and the blacksmith,Morrison wants to show us her definition of ideal relationships between man and woman:Male participation is indispensable in a female’s growth and redemption.Only in the process of jointly conquering the shadows and tribulations of the past,can they reach real mutual understanding and harmony.展开更多
Since 2004, a total of 23 members have given their financial support to CREIC. Here we wish to express our sincere thanks to them. The names of our sponsors are listed below.
Coalburst is one of the most serious disasters that threaten the safe production of coal mines, and this disaster is particularly serious in China. This paper presents an overview of coalbursts in China since 1980s. F...Coalburst is one of the most serious disasters that threaten the safe production of coal mines, and this disaster is particularly serious in China. This paper presents an overview of coalbursts in China since 1980s. From the "stress and energy" and "regional and local" perspectives, the achievements in the theory, practice and management of coalbursts in China are systematically summarized. A theoretical system of coalbursts has been formed to reveal the deformational behavior of coalbursts and explain the mechanism of coalbursts. The occurrence conditions of coalbursts are put forward and the critical stress is obtained. The stress index method for risk evaluation of coalbursts before mining is proposed, and the deformation localization prediction method of coalbursts is put forward. The relationship between energy release and absorption in the process of coalbursts is found, and the prevention and control methods of coalbursts, including the regional method, the local method and support, are presented. The safety evaluation index of coalburst prevention and control is put forward. The integrated prevention and control method for coal and gas outbursts is proposed. The prevention and control technology and equipment of coalbursts have also been developed. Amongst them, the distribution law of the critical stress in China coalburst mines is discovered. The technology and equipment for monitoring, prevention and control of coalbursts, as well as for integrated prevention and control of combined coalbursts and other disasters, have been developed. The energy-absorbing and coalburst-preventing support technology for roadways is invented, and key engineering parameters of coalburst prevention and control are pointed out. In China, coalburst prevention and control laws and standards have been developed. Technical standards for coalbursts are formulated, statute and regulations for coal mines are established, and regulatory documents are promoted.展开更多
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac...The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.展开更多
To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockb...To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.展开更多
Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control...Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control remains challenging in the engineering field.In this study,the mechanism of excavation-induced rockburst was briefly described,and it was proposed to apply the excavation compensation method(ECM)to rockburst control.Moreover,a field test was carried out on the Qinling Water Conveyance Tunnel.The following beneficial findings were obtained:Excavation leads to changes in the engineering stress state of surrounding rock and results in the generation of excess energy DE,which is the fundamental cause of rockburst.The ECM,which aims to offset the deep excavation effect and lower the risk of rockburst,is an active support strategy based on high pre-stress compensation.The new negative Poisson’s ratio(NPR)bolt developed has the mechanical characteristics of high strength,high toughness,and impact resistance,serving as the material basis for the ECM.The field test results reveal that the ECM and the NPR bolt succeed in controlling rockburst disasters effectively.The research results are expected to provide guidance for rockburst support in deep underground projects such as Sichuan-Xizang Railway.展开更多
The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ...The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.展开更多
Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR ...Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection.展开更多
Critical care medicine in the 21st century has witnessed remarkable advancements that have significantly improved patient outcomes in intensive care units(ICUs).This abstract provides a concise summary of the latest d...Critical care medicine in the 21st century has witnessed remarkable advancements that have significantly improved patient outcomes in intensive care units(ICUs).This abstract provides a concise summary of the latest developments in critical care,highlighting key areas of innovation.Recent advancements in critical care include Precision Medicine:Tailoring treatments based on individual patient characteristics,genomics,and biomarkers to enhance the effectiveness of therapies.The objective is to describe the recent advancements in Critical Care Medicine.Telemedicine:The integration of telehealth technologies for remote patient monitoring and consultation,facilitating timely interventions.Artificial intelligence(AI):AI-driven tools for early disease detection,predictive analytics,and treatment optimization,enhancing clinical decision-making.Organ Support:Advanced life support systems,such as Extracorporeal Membrane Oxygenation and Continuous Renal Replacement Therapy provide better organ support.Infection Control:Innovative infection control measures to combat emerging pathogens and reduce healthcare-associated infections.Ventilation Strategies:Precision ventilation modes and lung-protective strategies to minimize ventilatorinduced lung injury.Sepsis Management:Early recognition and aggressive management of sepsis with tailored interventions.Patient-Centered Care:A shift towards patient-centered care focusing on psychological and emotional wellbeing in addition to medical needs.We conducted a thorough literature search on PubMed,EMBASE,and Scopus using our tailored strategy,incorporating keywords such as critical care,telemedicine,and sepsis management.A total of 125 articles meeting our criteria were included for qualitative synthesis.To ensure reliability,we focused only on articles published in the English language within the last two decades,excluding animal studies,in vitro/molecular studies,and non-original data like editorials,letters,protocols,and conference abstracts.These advancements reflect a dynamic landscape in critical care medicine,where technology,research,and patient-centered approaches converge to improve the quality of care and save lives in ICUs.The future of critical care promises even more innovative solutions to meet the evolving challenges of modern medicine.展开更多
Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reduc...Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reducing agent.The as-synthesized silica nanospheres possess radial fibers with a distance of 15 nm,exhibiting a high specific surface area(443.56 m^(2)·g^(-1)).Meanwhile,the obtained Pt-Pd alloy NPs are uniformly dispersed on the silica surface with a metallic particle size of 4-6 nm,which exist as metallic Pd and Pt on the surface of monodisperse KCC-1,showing the transfer of electrons from Pd to Pt.The as-synthesized 2.5%Pt-2.5%Pd/KCC-1 exhibited excellent catalytic activity and stability for the continuous dehydrogenation of 2-methoxycyclohexanol to prepare guaiacol.Compared with Pt or Pd single metal supported catalysts,the obtained 2.5%Pt-2.5%Pd/KCC-1 shows 97.2%conversion rate of 2-methoxycyclohexanol and 76.8%selectivity for guaiacol,which attributed to the significant synergistic effect of bimetallic Pt-Pd alloy NPs.Furthermore,turn over frequency value of the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs achieved 4.36 s^(-1),showing higher catalytic efficiency than other two monometallic catalysts.Reaction pathways of dehydro-aromatization of 2-methoxycyclohexanol over the obtained catalyst are proposed.Consequently,the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs prove their potential in the dehydrogenation of 2-methoxycyclohexanol,while the kinetics and mechanistic study of the dehydrogenation reaction over the catalyst in a continuous fixed-bed reactor may provide valuable information for the development of green,outstanding and powerful synthetic pathway of guaiacol.展开更多
Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demon...Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demonstrate high activity by expanding the number of active sites,but they also intensify deactivation issues,such as agglomeration and poisoning,simultaneously.Exsolution for bottomup synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials.Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process.Their uniformity and stability,resulting from the socketed structure,play a crucial role in the development of novel nanocatalysts.Recently,tremendous research efforts have been dedicated to further controlling exsolution particles.To effectively address exsolution at a more precise level,understanding the underlying mechanism is essential.This review presents a comprehensive overview of the exsolution mechanism,with a focus on its driving force,processes,properties,and synergetic strategies,as well as new pathways for optimizing nanocatalysts in diverse applications.展开更多
Neurotrophic factors,or neurotrophins,are a group of molecules supporting the growth,survival,and differentiation of developing and mature neurons.Given their role in the survival of neurons,and often of specific subs...Neurotrophic factors,or neurotrophins,are a group of molecules supporting the growth,survival,and differentiation of developing and mature neurons.Given their role in the survival of neurons,and often of specific subsets of brain cells,neurotrophins have been implicated in several ways with many neurodegenerative disorders.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Education(2019R1F1A1A0057735).
文摘This study explored how mental health professionals collaborate with peer supporters with mental disabilities in a community mental health institution.From January 19 to February 23,2021,three 60 min interviews were conducted with six mental health professionals working at a Korean community center.The results were qualitatively analyzed and divided into four themes and eight categories.The four themes were the perceptions of and challenges in working with peer supporters with mental disabilities,conflict and confusion about working with peer supporters,forming partnerships with peer supporters,and policy support for peer supporters’job security.Participants reported vague anxiety about working with a peer supporter and difficulties with the trial-and-error process of adjusting to the role as challenging.Over time,however,they realized that they needed to make an effort to develop meaningful relationships with peer supporters and mental health professionals.Thus,through this study,we realized that there was a need to improve the system,such as building infrastructure for job stability for peer support workers and capacity building tailored to the mental disorders.Although peer supporters play various roles while working with mental health professionals,this study showed the possibility of mutual growth through communication and cooperation.These findings will help prepare systems necessary for collaboration between the two teams amidst the increasing institutionalization of peer support for mental disorders.
基金Project supported bythe Natural Science Foundation of Zhejiang Province (Y505285)
文摘A new catalyst support, Ce-Mg-O, was prepared in a novel way macromolecule surfactant modified method and was used as a catalyst support for low-temperature methane combustion. The results indicate that the new type of FeOx/Ce- Mg-O catalyst exhibits high activity in low-temperature methane combustion, such that the T90 at which 90% conversion of methane occurs can be obtained at 560 ℃. The structure of the catalyst and the effect of the supporter on catalytic activity were characterized by transmission electronic microscopy (TEM), X-ray diffraction (XRD), and temperature-programmed reduction (TPR). The results indicate that the high catalytic activity of FeOx/Ce-Mg-O over methane combustion is strongly dependent on the particle size, typical crystal phase of the Ce-Mg-O, and the interaction of FeOx and Ce-Mg-O.
文摘Background: This study assessed treatment interruption of tuberculosis (TB) patients managed by treatment supporters and health care workers and other predictors of treatment interruption. Methods: A descriptive cross-sectional study was conducted. Four hundred and seventy new smear positive TB patients above 14 years of age were consecutively recruited between October 1 and December 31 2012 from 34 (23 public and 11 private) directly observed treatment short course (DOTS) facilities that offered TB treatment and microscopy services. They were followed up till treatment was completed. Logistic regression was used to assess the predictors of treatment interruption. Results: A significantly higher proportion of smokers (58.6% vs 38.3%, p = 0.030), patients supervised by treatment supporters (44.4% vs 34.7%, p = 0.032), patients not counselled before initiation of treatment (55.6% vs 38.2%, p = 0.041), patients managed at private DOTS facilities (50% vs 36.3%, p = 0.010) and TB/HIV co-infected patients (54.2% vs 38.6%, p = 0.038) had treatment interruption. Predictors of treatment interruption were supervision by treatment supporters, smoking, lack of pre-treatment counselling and TB/HIV co-infection. Conclusion: A higher proportion of patients supervised by treatment supporters had treatment interruption than those supervised by health care workers. There may be a need to review the concept of treatment supervision by treatment supporters in Lagos state Nigeria.
文摘Beloved and A Mercy are widely regarded as a companion piece to each other.This thesis intends to employ Gerard Genette’s narrow-sense intertextuality to study Two Black male Characters in Beloved&A Mercy:Paul D&the Blacksmith.It is hoped that this thesis will reveal the deep concern of Morrison not only for the future of women of her own race,but also for the black men.And by the creation of Paul D and the blacksmith,Morrison wants to show us her definition of ideal relationships between man and woman:Male participation is indispensable in a female’s growth and redemption.Only in the process of jointly conquering the shadows and tribulations of the past,can they reach real mutual understanding and harmony.
文摘Since 2004, a total of 23 members have given their financial support to CREIC. Here we wish to express our sincere thanks to them. The names of our sponsors are listed below.
基金This work was supported by the National Natural Science Foundation of China-Liaoning Joint Fund Key Project(Grant No.U1908222)the National Natural Science Foundation of China(Grant No.51774015).
文摘Coalburst is one of the most serious disasters that threaten the safe production of coal mines, and this disaster is particularly serious in China. This paper presents an overview of coalbursts in China since 1980s. From the "stress and energy" and "regional and local" perspectives, the achievements in the theory, practice and management of coalbursts in China are systematically summarized. A theoretical system of coalbursts has been formed to reveal the deformational behavior of coalbursts and explain the mechanism of coalbursts. The occurrence conditions of coalbursts are put forward and the critical stress is obtained. The stress index method for risk evaluation of coalbursts before mining is proposed, and the deformation localization prediction method of coalbursts is put forward. The relationship between energy release and absorption in the process of coalbursts is found, and the prevention and control methods of coalbursts, including the regional method, the local method and support, are presented. The safety evaluation index of coalburst prevention and control is put forward. The integrated prevention and control method for coal and gas outbursts is proposed. The prevention and control technology and equipment of coalbursts have also been developed. Amongst them, the distribution law of the critical stress in China coalburst mines is discovered. The technology and equipment for monitoring, prevention and control of coalbursts, as well as for integrated prevention and control of combined coalbursts and other disasters, have been developed. The energy-absorbing and coalburst-preventing support technology for roadways is invented, and key engineering parameters of coalburst prevention and control are pointed out. In China, coalburst prevention and control laws and standards have been developed. Technical standards for coalbursts are formulated, statute and regulations for coal mines are established, and regulatory documents are promoted.
基金financially supported by the National Natural Science Foundation of China(No.51974028)。
文摘The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.
基金funding support from the Fundamental Research Funds for the Central Universities(Grant No.2023JBZY024)the National Natural Science Foundation of China(Grant Nos.52208382 and 52278387).
文摘To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.
基金supported by the National Natural Science Foundation of China (41941018)the Foundation of State Key Laboratory for Geomechanics and Deep Underground Engineering (SKLGDUEK 2217)the Foundation of Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards of Zhejiang Province (PCMGH-2022-03).
文摘Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control remains challenging in the engineering field.In this study,the mechanism of excavation-induced rockburst was briefly described,and it was proposed to apply the excavation compensation method(ECM)to rockburst control.Moreover,a field test was carried out on the Qinling Water Conveyance Tunnel.The following beneficial findings were obtained:Excavation leads to changes in the engineering stress state of surrounding rock and results in the generation of excess energy DE,which is the fundamental cause of rockburst.The ECM,which aims to offset the deep excavation effect and lower the risk of rockburst,is an active support strategy based on high pre-stress compensation.The new negative Poisson’s ratio(NPR)bolt developed has the mechanical characteristics of high strength,high toughness,and impact resistance,serving as the material basis for the ECM.The field test results reveal that the ECM and the NPR bolt succeed in controlling rockburst disasters effectively.The research results are expected to provide guidance for rockburst support in deep underground projects such as Sichuan-Xizang Railway.
基金supported by Distinguished Youth Funds of National Natural Science Foundation of China (No.51925402)National Natural Science Foundation of China (Nos.51904203 and 52174125)+4 种基金the China Postdoctoral Science Foundation (No.2021M702049)the Tencent Foundation or XPLORER PRIZEShanxi Science and Technology Major Project Funds (No.20201102004)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (No.2021SX-TD001)Open Fund Research Project Supported by State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology (No.SICGM202209)。
文摘The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.
基金This research was funded by the National Natural Science Foundation of China(Nos.71762010,62262019,62162025,61966013,12162012)the Hainan Provincial Natural Science Foundation of China(Nos.823RC488,623RC481,620RC603,621QN241,620RC602,121RC536)+1 种基金the Haikou Science and Technology Plan Project of China(No.2022-016)the Project supported by the Education Department of Hainan Province,No.Hnky2021-23.
文摘Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection.
文摘Critical care medicine in the 21st century has witnessed remarkable advancements that have significantly improved patient outcomes in intensive care units(ICUs).This abstract provides a concise summary of the latest developments in critical care,highlighting key areas of innovation.Recent advancements in critical care include Precision Medicine:Tailoring treatments based on individual patient characteristics,genomics,and biomarkers to enhance the effectiveness of therapies.The objective is to describe the recent advancements in Critical Care Medicine.Telemedicine:The integration of telehealth technologies for remote patient monitoring and consultation,facilitating timely interventions.Artificial intelligence(AI):AI-driven tools for early disease detection,predictive analytics,and treatment optimization,enhancing clinical decision-making.Organ Support:Advanced life support systems,such as Extracorporeal Membrane Oxygenation and Continuous Renal Replacement Therapy provide better organ support.Infection Control:Innovative infection control measures to combat emerging pathogens and reduce healthcare-associated infections.Ventilation Strategies:Precision ventilation modes and lung-protective strategies to minimize ventilatorinduced lung injury.Sepsis Management:Early recognition and aggressive management of sepsis with tailored interventions.Patient-Centered Care:A shift towards patient-centered care focusing on psychological and emotional wellbeing in addition to medical needs.We conducted a thorough literature search on PubMed,EMBASE,and Scopus using our tailored strategy,incorporating keywords such as critical care,telemedicine,and sepsis management.A total of 125 articles meeting our criteria were included for qualitative synthesis.To ensure reliability,we focused only on articles published in the English language within the last two decades,excluding animal studies,in vitro/molecular studies,and non-original data like editorials,letters,protocols,and conference abstracts.These advancements reflect a dynamic landscape in critical care medicine,where technology,research,and patient-centered approaches converge to improve the quality of care and save lives in ICUs.The future of critical care promises even more innovative solutions to meet the evolving challenges of modern medicine.
基金supported by Natural Science Foundation of Henan Province of China(162300410253)the Open Research Fund of State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization,China Pingmei Shen-ma Group(41040220181107-8).
文摘Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reducing agent.The as-synthesized silica nanospheres possess radial fibers with a distance of 15 nm,exhibiting a high specific surface area(443.56 m^(2)·g^(-1)).Meanwhile,the obtained Pt-Pd alloy NPs are uniformly dispersed on the silica surface with a metallic particle size of 4-6 nm,which exist as metallic Pd and Pt on the surface of monodisperse KCC-1,showing the transfer of electrons from Pd to Pt.The as-synthesized 2.5%Pt-2.5%Pd/KCC-1 exhibited excellent catalytic activity and stability for the continuous dehydrogenation of 2-methoxycyclohexanol to prepare guaiacol.Compared with Pt or Pd single metal supported catalysts,the obtained 2.5%Pt-2.5%Pd/KCC-1 shows 97.2%conversion rate of 2-methoxycyclohexanol and 76.8%selectivity for guaiacol,which attributed to the significant synergistic effect of bimetallic Pt-Pd alloy NPs.Furthermore,turn over frequency value of the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs achieved 4.36 s^(-1),showing higher catalytic efficiency than other two monometallic catalysts.Reaction pathways of dehydro-aromatization of 2-methoxycyclohexanol over the obtained catalyst are proposed.Consequently,the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs prove their potential in the dehydrogenation of 2-methoxycyclohexanol,while the kinetics and mechanistic study of the dehydrogenation reaction over the catalyst in a continuous fixed-bed reactor may provide valuable information for the development of green,outstanding and powerful synthetic pathway of guaiacol.
基金This study was supported by the National Research Foundation of Korea(NRF-2021R1C1C1010233)funded by the Korean government(MSIT)+1 种基金This research was also supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)Grant(No.G032542411)funded by the Korea Ministry of Trade,Industry,and Energy(MOTIE).
文摘Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demonstrate high activity by expanding the number of active sites,but they also intensify deactivation issues,such as agglomeration and poisoning,simultaneously.Exsolution for bottomup synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials.Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process.Their uniformity and stability,resulting from the socketed structure,play a crucial role in the development of novel nanocatalysts.Recently,tremendous research efforts have been dedicated to further controlling exsolution particles.To effectively address exsolution at a more precise level,understanding the underlying mechanism is essential.This review presents a comprehensive overview of the exsolution mechanism,with a focus on its driving force,processes,properties,and synergetic strategies,as well as new pathways for optimizing nanocatalysts in diverse applications.
文摘Neurotrophic factors,or neurotrophins,are a group of molecules supporting the growth,survival,and differentiation of developing and mature neurons.Given their role in the survival of neurons,and often of specific subsets of brain cells,neurotrophins have been implicated in several ways with many neurodegenerative disorders.