期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
双磁极式磁粒研磨机理分析及试验研究 被引量:10
1
作者 程淼 陈松 +3 位作者 赵杨 李文龙 吕旖旎 陈燕 《表面技术》 EI CAS CSCD 北大核心 2020年第4期81-89,共9页
目的解决平面磁粒研磨中压力不均匀和需要反复调整研磨间隙的问题,设计双磁极式研磨方法。方法首先对双磁极式研磨方法机理进行分析,并对研磨区域单颗磨粒进行受力分析,寻找影响研磨压力的主要因素;其次利用Ansoft Maxwell软件对两种研... 目的解决平面磁粒研磨中压力不均匀和需要反复调整研磨间隙的问题,设计双磁极式研磨方法。方法首先对双磁极式研磨方法机理进行分析,并对研磨区域单颗磨粒进行受力分析,寻找影响研磨压力的主要因素;其次利用Ansoft Maxwell软件对两种研磨方法进行磁场仿真,分析两种研磨方法的研磨区域磁场梯度变化,通过面积积分法对比磁感应强度的影响程度;最后设计试验装置,通过试验对理论分析及有限元分析的结果进行验证,对比研磨前后工件表面粗糙度及微观形貌变化。结果双磁极式研磨方法中磨粒的研磨压力完全由磁场力提供,与研磨区域磁感应强度成正比,研磨区域磁感应强度比"铣削式"研磨方法提高约34.56%。两种方法在相同试验条件下对SUS304不锈钢板研磨40 min,双磁极式研磨方法研磨后,工件表面原始纹理基本被去除,表面粗糙度值由原始的0.25μm下降至0.16μm,下降率为36%,比"铣削式"研磨方法提高约80%,粗糙度曲线波动平缓,波峰波谷高度差变化均匀且表面形貌光滑平整。结论双磁极式研磨方法研磨区域磁场梯度变化明显,利于磨粒流动更新,研磨压力相对稳定,表面粗糙度下降率高,研磨后工件表面形貌光整,与"铣削式"研磨方法相比具有较明显的优势。 展开更多
关键词 磁粒研磨 双磁极 受力状态 面积积分 sus304不锈钢板 表面粗糙度
下载PDF
脉冲电磁场辅助平面磁粒研磨加工试验 被引量:5
2
作者 杨欢 陈松 +2 位作者 张磊 徐进文 陈燕 《表面技术》 EI CAS CSCD 北大核心 2022年第2期313-321,共9页
目的在传统的平面磁粒研磨加工中添加脉冲辅助磁场,增大加工区域中磁感应强度和加工时磁感应强度动态变化,丰富磨料粒子在加工时的运动形式,使研磨轨迹复杂化,降低工件表面粗糙度,获得更好的工件表面形貌。方法通过分析磨料粒子在有无... 目的在传统的平面磁粒研磨加工中添加脉冲辅助磁场,增大加工区域中磁感应强度和加工时磁感应强度动态变化,丰富磨料粒子在加工时的运动形式,使研磨轨迹复杂化,降低工件表面粗糙度,获得更好的工件表面形貌。方法通过分析磨料粒子在有无辅助磁场时各自的受力情况,探究辅助磁场对磨料在加工时运动状态的影响,研究脉冲辅助磁场下磨料的运动行为机理。利用Ansoft Maxwell软件对电磁铁不同形状的磁极头产生的磁场进行模拟对比,确定理论上最优的磁极头形状。同时模拟对比脉冲电流在不同时刻加工区域内磁感线的分布情况,以及恒定磁场和脉冲磁场下磨料的运动轨迹。通过试验对比无辅助磁场、恒定辅助磁场和脉冲辅助磁场下磁粒研磨加工SUS304不锈钢的表面形貌和表面粗糙度。结果在磁粒研磨加工中,磁性磨料分布受磁感线的影响,在脉冲辅助磁场的作用下加工区域内的磁性磨料会随磁感线的变化而做周期性的往复运动,加工时会有更为复杂的研磨轨迹。模拟3种不同形状的磁极头在加工区域产生的磁感应强度曲线,平面、圆锥面和半球面在中点处的磁感应强度峰值分别为655、636、702 mT。以SUS304不锈钢板作为试验对象,原始表面粗糙度为0.46μm,采用半球形的电磁铁磁极头,在研磨间隙为2 mm、永磁极转速为800 r/min、进给速度为5 mm/s的试验条件下,对比电磁铁不通电、通入0.8 A直流电流、通入1 Hz,占空比50%,峰值电流0.8 A的单向脉冲电流3种辅助磁场分别对工件研磨30 min后的工件表面形貌,无辅助磁场时工件表面仍残留一些原始纹理;恒定辅助磁场下工件表面原始纹理被去除,但表面存在明显圆弧形研磨痕迹;脉冲辅助磁场下工件表面形貌更为光整、平滑。研磨后工件表面粗糙度分别降至0.28、0.13、0.06μm。结论脉冲磁场辅助磁粒研磨在提高加工区域磁感应强度的同时,可使磁性磨料在加工时做周期性运动,研磨轨迹复杂化,促进了磨料的更新,相比传统磁粒研磨和恒定辅助磁场磁粒研磨工艺,脉冲磁场辅助磁粒研磨加工后的工件表面形貌更加平滑,表面粗糙度更低。 展开更多
关键词 脉冲磁场 电磁 磁粒研磨 sus304不锈钢板 表面粗糙度 表面光整加工
下载PDF
低频交变磁场超精密平面磁力研磨加工研究 被引量:7
3
作者 吴金忠 邢百军 +1 位作者 邹艳华 郑菲 《表面技术》 EI CAS CSCD 北大核心 2018年第11期281-289,共9页
目的通过利用低频交变磁场下产生的变动磁力,改善传统磁力研磨加工中磁力刷变形、磨料结块、磨料利用率低等问题,实现平面超光滑、纳米级加工。方法在电磁线圈中通入频率为3 Hz的交流电流,产生低频交变磁场。利用磁通密度测量仪(EMIC Ga... 目的通过利用低频交变磁场下产生的变动磁力,改善传统磁力研磨加工中磁力刷变形、磨料结块、磨料利用率低等问题,实现平面超光滑、纳米级加工。方法在电磁线圈中通入频率为3 Hz的交流电流,产生低频交变磁场。利用磁通密度测量仪(EMIC Gauss Meter GM 4002)对加工区域磁感应强度进行测定,考察低频交变磁场的磁场强度分布状况。设计组装一套研磨压力测量系统,利用数据记录处理软件对比分析低频交变磁场和直流磁场所产生的研磨压力,深入研究研磨工具(磁簇)在低频交变磁场作用下的变化规律。研制一套低频交变磁场平面磁力研磨加工装置,以SUS304不锈钢板为加工对象,并与直流磁场进行对比实验,验证利用低频交变磁场进行磁力研磨的可行性及加工性能。结果低频交变磁场中各点磁感应强度均在峰值与谷值之间不断变化,其变化规律近似于正弦分布。在磁极边缘(R=7.5 mm),产生最大峰谷值;从磁极半径(R=6 mm)到磁极中心(R=2 mm),磁场强度逐步减弱。低频交变磁场下研磨压力值呈周期性变化,且研磨压力的平均值大于直流磁场下的值。磁簇在低频交变磁场作用下产生周期性振动。磁簇呈收缩状态时,磁性粒子带动磨料上浮于磁簇前端。当磁场方向改变时,磁簇先呈发散状态,然后收缩,此过程中磨料颗粒与磁性粒子再次混合。如此循环更新,不仅解决磁簇与工件接触后产生的变形问题,而且提高了磨料的利用率,保证研磨工具稳定。分别使用低频交变磁场和直流磁场对SUS304不锈钢板进行研磨,使用油基研磨液,主轴转数为350 rad/min,交流电流有效值为1.9 A,频率为3 Hz。第一阶段选择平均粒径为30μm的电解铁粉和WA#10000的磨料颗粒,经过60 min研磨,表面粗糙度值分别为35.28 nm和81.36 nm;第二阶段选择平均粒径6μm的羰基铁粉和1μm的金刚石粉,研磨时间60 min,最终表面粗糙度值分别达到4.51 nm和17.58 nm。结论利用低频交变磁场能够实现研磨工具(磁簇)的循环更新,提高磨料利用率。与直流磁场相比,利用低频交流磁场磁力研磨法所获得的加工表面均匀、无划痕,实现了平面超光滑纳米级加工。 展开更多
关键词 磁力研磨 低频交变磁场 纳米级加工 研磨压力 sus304不锈钢
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部