期刊文献+
共找到1,591篇文章
< 1 2 80 >
每页显示 20 50 100
Detection of solar radio burst intensity based on a mod ified multifactor SVM algorithm
1
作者 Luo Yimei Zhu Xuefen +2 位作者 Lin Mengying Yang Fan Tu Gangyi 《Journal of Southeast University(English Edition)》 EI CAS 2022年第1期20-26,共7页
To realize the automatic detection of solar radio burst(SRB)intensity,detection based on a modified multifactor support vector machine(SVM)algorithm is proposed.First,the influence of SRB on global navigation satellit... To realize the automatic detection of solar radio burst(SRB)intensity,detection based on a modified multifactor support vector machine(SVM)algorithm is proposed.First,the influence of SRB on global navigation satellite system(GNSS)signals is analyzed.Feature vectors,which can reflect the SRB intensity of stations,are also extracted.SRB intensity is classified according to the solar radio flux,and different class labels correspond to different SRB intensity types.The training samples are composed of feature vectors and their corresponding class labels.Second,training samples are input into SVM classifiers to one-against-one training to obtain the optimal classification models.Finally,the optimal classification model is synthesized into a modified multifactor SVM classifier,which is used to automatically detect the SRB intensity of new data.Experimental results indicate that for historical SRB events,the average accuracy of SRB intensity detection is greater than 90%when the solar incident angle is higher than 20°.Compared with other methods,the proposed method considers many factors with higher accuracy and does not rely on radio telescopes,thereby saving cost. 展开更多
关键词 global navigation satellite system solar radio burst modified multifactor svm algorithm detection accuracy
下载PDF
基于SVM算法的虚假航迹识别
2
作者 代睿 鹿瑶 安锐 《导航定位与授时》 CSCD 2024年第2期103-110,共8页
针对云雨杂波和主被动干扰导致多雷达传感器产生虚假目标航迹的问题,利用支持向量机(SVM)算法的自主学习能力,通过构建基于数据驱动的判别模型进行虚假航迹识别。针对航迹起始得到的目标潜在航迹,利用人工智能数据驱动、自学习的特点,... 针对云雨杂波和主被动干扰导致多雷达传感器产生虚假目标航迹的问题,利用支持向量机(SVM)算法的自主学习能力,通过构建基于数据驱动的判别模型进行虚假航迹识别。针对航迹起始得到的目标潜在航迹,利用人工智能数据驱动、自学习的特点,设计了SVM算法。通过对已标记真假的目标航迹样本进行离线学习,形成虚假航迹识别的SVM分类器,实现了基于数据驱动的判别模型代替先验知识规则约束的固定模型,并在工程应用中,利用SVM分类器在线识别虚假航迹,完成实时剔除。通过实测雷达数据实验验证,该算法的目标虚假航迹准确率高达95%以上,完全满足实际的工程应用需求。相比基于阈值或规则进行硬性判断的传统虚假航迹识别方法,所提出的算法不仅提高了准确率,还具有较高的实时性,能够适应复杂多变的杂波环境,在实际应用中具有更强的适应性和实用性。因此,提出的基于SVM算法的虚假航迹识别方法对于密集杂波场景下的虚假航迹剔除问题具有显著的实际应用价值。 展开更多
关键词 目标跟踪 机器学习 支持向量机(svm)算法 虚假航迹
下载PDF
基于SVM算法的汽车空调设备制冷剂泄漏故障预测方法
3
作者 杨超 《内燃机与配件》 2024年第20期60-62,共3页
信息技术的发展为人们的日常生产、生活提供了极为便利的条件,也为各行各业的技术体系升级和转型奠定了良好基础,本文则是以提升汽车空调设备制冷剂泄漏检测质量和时效性为目的,围绕着SVM算法进行分析,明确了目前数据挖掘在制冷剂泄漏... 信息技术的发展为人们的日常生产、生活提供了极为便利的条件,也为各行各业的技术体系升级和转型奠定了良好基础,本文则是以提升汽车空调设备制冷剂泄漏检测质量和时效性为目的,围绕着SVM算法进行分析,明确了目前数据挖掘在制冷剂泄漏故障诊断领域的研究现状,综合SVM算法的具体原理和应用细节,从数据预处理、故障预测模型设计以及预测实验的角度进行分析。结果表明,SVM算法对于汽车空调设备制冷剂泄漏故障预测有着较强的时效性,故障检测的时间更短,预测效果更强,有助于提升空调设备系统的运维安全性和有效性。 展开更多
关键词 svm算法 汽车空调设备 制冷剂 线路故障 预测
下载PDF
基于SVM的电动自行车骑行者事故伤害程度影响因素分析
4
作者 于志青 孙振东 《黑龙江交通科技》 2024年第9期169-173,共5页
为研究电动自行车交通事故中影响电动自行车骑行者伤害程度的因素,利用一县级市2018—2021年涉电动自行车与机动车发生交通事故数据,选取22类与交通事故相关的因素,运用随机森林算法对22类变量进行筛选,采用SVM算法进行分类预测。结果表... 为研究电动自行车交通事故中影响电动自行车骑行者伤害程度的因素,利用一县级市2018—2021年涉电动自行车与机动车发生交通事故数据,选取22类与交通事故相关的因素,运用随机森林算法对22类变量进行筛选,采用SVM算法进行分类预测。结果表明:电动自行车交通事故致电动自行车骑行者死亡或重伤的重要因素依次为交通方式、驾龄、道路类型、头盔使用情况、违法行为、事故地点、路口路段类型、道路隔离、性别、交通控制方式。 展开更多
关键词 电动自行车 伤害程度 svm算法
下载PDF
基于改进鲸鱼算法优化SVM的软件缺陷检测方法
5
作者 杜晔 田晓清 +1 位作者 李昂 黎妹红 《信息网络安全》 CSCD 北大核心 2024年第8期1152-1162,共11页
为解决传统支持向量机在软件缺陷检测中存在分类精度低、参数选择困难等问题,文章提出一种基于改进鲸鱼算法优化SVM的软件缺陷检测方法LFWOA-SVM。首先针对鲸鱼算法在求解过程中存在收敛速度慢、寻优效率低和局部最优解问题,基于Levy飞... 为解决传统支持向量机在软件缺陷检测中存在分类精度低、参数选择困难等问题,文章提出一种基于改进鲸鱼算法优化SVM的软件缺陷检测方法LFWOA-SVM。首先针对鲸鱼算法在求解过程中存在收敛速度慢、寻优效率低和局部最优解问题,基于Levy飞行策略优化鲸鱼觅食阶段,最大限度地实现搜索代理多样化,并利用混合变异扰动算子提高WOA的全局寻优能力;然后采用改进的鲸鱼算法LFWOA对SVM的惩罚因子和核函数参数进行优化,在获得最优参数的同时可有效检测软件缺陷。仿真实验表明,在6个基准测试函数中,LFWOA展现出更高的寻优速度和全局搜索能力;在8个公开软件缺陷数据集上进行测试显示,LFWOA-SVM方法能够有效提高分类性能和预测精度。 展开更多
关键词 软件缺陷检测 Levy飞行 鲸鱼优化算法 变异扰动 支持向量机
下载PDF
基于改进NGO算法优化SVM的变压器故障诊断研究
6
作者 陈忠华 王森 《控制工程》 CSCD 北大核心 2024年第11期2010-2018,共9页
为解决通过油中溶解气体诊断变压器故障精确度不高的问题,提出了一种改进北方苍鹰优化(INGO)算法优化支持向量机(SVM)的故障分类模型。首先,采用主成分分析(PCA)法对油中溶解气体体积数据降维,去除冗余信息;然后,通过引入Singer混沌映... 为解决通过油中溶解气体诊断变压器故障精确度不高的问题,提出了一种改进北方苍鹰优化(INGO)算法优化支持向量机(SVM)的故障分类模型。首先,采用主成分分析(PCA)法对油中溶解气体体积数据降维,去除冗余信息;然后,通过引入Singer混沌映射、改进的野马算法搜索机制、Lévy飞行策略多种方法改进北方苍鹰优化算法,再利用INGO算法对SVM核心参数进行优化;最后,将处理后的数据输入到INGO-SVM故障诊断模型中。结果表明,其诊断平均准确率为93.5%,与NGO、GWO、AO优化SVM相比,诊断平均准确率分别提升了3.34%、7.04%、10.12%。同时,该模型也优于极限学习机(ELM)、概率神经网络(PNN)、随机森林(RF)典型分类模型,验证了所建立的变压器故障诊断模型具有更高的精度和泛化能力。 展开更多
关键词 变压器 故障诊断 数据处理 北方苍鹰优化算法 支持向量机
下载PDF
多策略融合改进AO优化SVM的变压器故障诊断研究
7
作者 谢国民 齐晓亮 《控制工程》 CSCD 北大核心 2024年第11期2000-2009,共10页
针对变压器故障诊断精度不高的问题,提出了一种多策略融合改进天鹰优化器(IAO)优化支持向量机(SVM)的变压器故障诊断模型。首先,采用核主成分分析(KPCA)方法对高维度据进行降维,减少数据中的稀疏性对结果的影响;其次,利用Tent混沌映射... 针对变压器故障诊断精度不高的问题,提出了一种多策略融合改进天鹰优化器(IAO)优化支持向量机(SVM)的变压器故障诊断模型。首先,采用核主成分分析(KPCA)方法对高维度据进行降维,减少数据中的稀疏性对结果的影响;其次,利用Tent混沌映射、动态扰动因子策略、点对称策略改善其寻优能力和收敛速度,通过算法寻优能力测试验证了其优越性;最后,利用IAO对SVM的参数寻优,克服SVM参数选择不良的弊端,建立变压器故障诊断模型。结果显示,与AO、WOA、GWO优化SVM相比,IAO优化SVM的诊断正确率分别提升了7.08%、9.74%、15.93%,同时,也优于最小二乘支持向量机(LSSVM)、BP神经网络(BPNN)、随机森林(RF)典型分类模型,验证了所建立的变压器故障诊断模型的优越性,并具有较强的泛化能力。 展开更多
关键词 变压器 故障诊断 油中溶解气体分析 算法改进 支持向量机
下载PDF
基于GA-SVM算法的无线局域网络入侵信号检测方法
8
作者 王芳 《电脑与电信》 2024年第1期47-49,共3页
常规的无线局域网络入侵信号检测节点多为独立式设定,检测效率较低,导致入侵信号检测误检率较高,为此提出对基于GA-SVM算法的无线局域网络入侵信号检测方法。该方法首先采用关联的方式进行入侵信号特征提取,提升检测效率,设置关联性检... 常规的无线局域网络入侵信号检测节点多为独立式设定,检测效率较低,导致入侵信号检测误检率较高,为此提出对基于GA-SVM算法的无线局域网络入侵信号检测方法。该方法首先采用关联的方式进行入侵信号特征提取,提升检测效率,设置关联性检测节点,构建GA-SVM测算入侵信号检测模型,采用定位分离方法来实现信号检测处理。测试结果表明:针对选定的300个采样点进行信号入侵检测,对比于传统分布式光纤网络入侵信号检测组、传统FastICA测算网络入侵信号检测组,此次所设计的GA-SVM测算网络入侵信号检测组最终得出的入侵信号检测误检率被较好地控制在20%以下,说明基于GA-SVM算法的检测效果更佳,针对性更强,具有实际的应用价值。 展开更多
关键词 GA-svm算法 无线局域网 网络入侵 信号检测 检测方法 信号感应
下载PDF
基于深度置信网络和SVM的铣刀磨损状态识别
9
作者 田雅琴 侯寅智 +2 位作者 胡梦辉 刘文涛 邢炜晨 《重型机械》 2024年第2期67-75,共9页
针对人工提取的磨损指标无法全面表达铣削磨损特征的问题,提出基于改进深度置信网络(IDBN)与支持向量机(SVM)的刀具磨损识别模型。首先对刀具切削力、振动和AE信号在时域、频域、时频域进行特征提取;其次采用IDBN对提取的特征降维;最后... 针对人工提取的磨损指标无法全面表达铣削磨损特征的问题,提出基于改进深度置信网络(IDBN)与支持向量机(SVM)的刀具磨损识别模型。首先对刀具切削力、振动和AE信号在时域、频域、时频域进行特征提取;其次采用IDBN对提取的特征降维;最后利用改进的海鸥算法优化支持向量机(ISOA-SVM)构建磨损识别模型。结果表明,经过100次随机分层抽样,IDBN-ISOA-SVM对刀具磨损的平均识别率达到99%以上。从降维手段、优化算法及分类模型三个方面与其他算法对比,该模型有较高的识别率和泛化性,能够准确识别铣刀磨损状态。 展开更多
关键词 磨损状态识别 深度置信网络 海鸥算法 支持向量机
下载PDF
采用改进遗传算法优化LS-SVM逆系统的外转子无铁心无轴承永磁同步发电机解耦控制 被引量:1
10
作者 朱熀秋 沈良瑜 《中国电机工程学报》 EI CSCD 北大核心 2024年第5期2037-2046,I0032,共11页
为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(leas... 为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(least square support vector machine,LS-SVM)逆系统的解耦控制策略。首先,基于ORC-BPMSG的结构及工作原理,推导其数学模型,并分析其可逆性。其次,建立LS-SVM回归方程,并采用IGA优化LS-SVM的性能参数,从而训练得到逆系统。然后,将逆系统与原系统串接,形成伪线性系统,实现了ORC-BPMSG的线性化和解耦。最后,将提出的控制方法与传统LS-SVM逆系统控制方法进行对比仿真和实验。仿真和实验结果表明:所提出的控制策略可以较好地实现ORC-BPMSG输出电压和悬浮力、以及悬浮力之间的解耦控制。 展开更多
关键词 外转子无铁心无轴承永磁同步发电机 最小二乘支持向量机 逆系统 改进遗传算法 解耦控制
下载PDF
基于优化SVM模型的立铣刀在机崩刃监测技术研究
11
作者 张曦 周青峰 +1 位作者 张龙佳 郑文妞 《计量与测试技术》 2024年第2期92-95,99,共5页
随着加工精度要求不断提高,切削过程中,对刀具在机磨损或崩刃状态进行在机实时监测的需求日益增加。本文以声发射和主轴功率为监测信号,通过提取时域、频域和时频域的有效特征,构建了基于融合信号的平底立铣刀在机崩刃SVM监测模型;采用... 随着加工精度要求不断提高,切削过程中,对刀具在机磨损或崩刃状态进行在机实时监测的需求日益增加。本文以声发射和主轴功率为监测信号,通过提取时域、频域和时频域的有效特征,构建了基于融合信号的平底立铣刀在机崩刃SVM监测模型;采用网格搜索、粒子群和遗传算法优化SVM模型参数,并在实际切削环境中,将平底立铣刀的崩刃监测效果进行对比。结果表明:基于遗传算法优化的SVM模型对铣刀崩刃状态监测效果最佳。 展开更多
关键词 声发射 主轴功率 崩刃检测 遗传算法 svm模型
下载PDF
基于HOG和TSO-SVM的水电机组轴心轨迹智能识别 被引量:1
12
作者 李浩博 李辉 +1 位作者 李华 袁江锋 《大电机技术》 2024年第2期81-87,共7页
水电机组的轴心轨迹能够反映机组不同的运行状态,为了提高轴心轨迹的识别率,准确判断机组运行状态,本文提出方向梯度直方图(Histogram of Oriented Gradient, HOG)结合由瞬态搜索优化(Transient Search Optimization, TSO)算法优化的支... 水电机组的轴心轨迹能够反映机组不同的运行状态,为了提高轴心轨迹的识别率,准确判断机组运行状态,本文提出方向梯度直方图(Histogram of Oriented Gradient, HOG)结合由瞬态搜索优化(Transient Search Optimization, TSO)算法优化的支持向量机(Support Vector Machine, SVM)的方法。将轴心轨迹信号经改进小波阈值方法去噪后,生成轴心轨迹图像,之后提取图像HOG特征,经主成分分析(Principal Components Analysis, PCA)降维处理后,利用TSO-SVM对降维后的特征进行分类识别。结果表明所提方法能够很好地识别不同状态的轴心轨迹,具有识别准确率高和识别速度快的特点。 展开更多
关键词 水电机组 轴心轨迹 小波阈值去噪 HOG特征 支持向量机 瞬态搜索优化算法
下载PDF
EHDE和WHO-SVM模型在齿轮箱故障诊断中的应用
13
作者 马晓娜 周海超 《机电工程》 CAS 北大核心 2024年第4期622-632,共11页
针对现有齿轮箱故障诊断方法对数据长度敏感的缺陷,提出了一种基于增强层次多样性熵(EHDE)和野马算法(WHO)优化支持向量机(SVM)的齿轮箱故障诊断模型。首先,传统熵值特征提取方法在特征提取阶段对数据样本的长度比较敏感,为此提出了增... 针对现有齿轮箱故障诊断方法对数据长度敏感的缺陷,提出了一种基于增强层次多样性熵(EHDE)和野马算法(WHO)优化支持向量机(SVM)的齿轮箱故障诊断模型。首先,传统熵值特征提取方法在特征提取阶段对数据样本的长度比较敏感,为此提出了增强层次多样性熵,并将其作为特征提取指标用于提取齿轮箱的故障特征;其次,采用WHO算法对SVM模型的参数进行了优化,建立了参数最优的WHO-SVM分类器;最后,将故障特征样本输入至WHO-SVM分类器中进行了训练和识别,完成了样本的故障识别;利用齿轮箱数据集分别从数据长度敏感性、算法特征提取时间、模型诊断性能三种角度对EHDE、精细复合多尺度样本熵、精细复合多尺度模糊熵、精细复合多尺度排列熵、精细复合多尺度散布熵、精细复合多尺度波动散布熵进行了对比研究。研究结果表明:EHDE方法对数据长度的要求较低,在数据长度为512时即可以取得99.1%的平均识别准确率,在诊断稳定性和诊断精度方面均优于其他对比方法;在算法的泛化性实验中,EHDE方法能够以98%的准确率识别齿轮箱的不同故障类型,具有明显的泛化性和通用性。 展开更多
关键词 齿轮箱故障诊断 增强层次多样性熵 野马算法优化支持向量机 数据长度敏感性 算法特征提取时间 模型诊断性能
下载PDF
Power Quality Disturbance Classification Method Based on Wavelet Transform and SVM Multi-class Algorithms 被引量:1
14
作者 Xiao Fei 《Energy and Power Engineering》 2013年第4期561-565,共5页
The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wav... The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification. 展开更多
关键词 Power Quality DISTURBANCE Classification WAVELET TRANSFORM svm MULTI-CLASS algorithmS
下载PDF
基于信号距离度模型和SVM的变压器绕组变形诊断方法研究
15
作者 唐轩 成俊杰 +2 位作者 吴琳 张磊 徐艳春 《高压电器》 CAS CSCD 北大核心 2024年第11期27-36,共10页
为了解决在使用频响法诊断绕组变形时依赖于人工经验判断误判率较高的问题,实现变压器绕组变形的精准诊断,提出了一种基于信号距离度模型和SVM的变压器绕组变形诊断方法。文中利用信号距离度模型,通过计算分频段互复距离度、互距离度、... 为了解决在使用频响法诊断绕组变形时依赖于人工经验判断误判率较高的问题,实现变压器绕组变形的精准诊断,提出了一种基于信号距离度模型和SVM的变压器绕组变形诊断方法。文中利用信号距离度模型,通过计算分频段互复距离度、互距离度、相关系数,将其作为特征量输入支持向量机进行故障分类。使用遗传算法(GA)对支持向量机进行参数优化。使用Pspice分别模拟了以5%为等级的57份样本和以3%为等级的90份样本,仿真发现,使用分频段互复距离度作为特征来进行绕组变形故障分类的准确率达到96.296 2%和97.222 2%,分类效果明显高于仅考虑幅值特性的互距离度和传统的相关系数。并通过实际变压器形变数据证明了其有效性,为变压器绕组故障诊断提供新思路。 展开更多
关键词 信号距离度模型 支持向量机 遗传算法 绕组变形
下载PDF
基于RF-SFLA-SVM的装配式建筑高空作业工人不安全行为预警
16
作者 王军武 何娟娟 +3 位作者 宋盈辉 刘一鹏 陈兆 郭婧怡 《中国安全科学学报》 CAS CSCD 北大核心 2024年第3期1-8,共8页
为有效预警装配式建筑高空作业工人不安全行为的发生趋势或状态,增强对装配式建筑工人不安全行为(PBWUBs)的管控,采用随机森林(RF)-混合蛙跳算法(SFLA)-支持向量机(SVM)模型,开展工人不安全行为预警研究。首先,采用SHEL模型分析处于高... 为有效预警装配式建筑高空作业工人不安全行为的发生趋势或状态,增强对装配式建筑工人不安全行为(PBWUBs)的管控,采用随机森林(RF)-混合蛙跳算法(SFLA)-支持向量机(SVM)模型,开展工人不安全行为预警研究。首先,采用SHEL模型分析处于高空作业危险中的PBWUBs的影响因素,并通过RF确定关键预警指标;然后,采用SFLA对SVM的参数进行寻优改进;最后,利用RF-SFLA-SVM预警高空作业PBWUBs,提出应对措施,并与其他预警模型对比。研究结果表明:基于RF-SFLA-SVM预警高空作业PBWUBs,准确率最高,为91.67%,与其他模型的预警性能相比,最高提升14%。研究结果可为高空作业PBWUBs的防控提供参考。 展开更多
关键词 随机森林(RF) 蛙跳算法(SFLA) 支持向量机(svm) 装配式建筑 高空作业 不安全行为
下载PDF
基于SVM算法的纸张生产质量自动化测试
17
作者 周涛 同剑飞 张志强 《造纸科学与技术》 2024年第9期50-53,共4页
由于外界环境污染、操作不当、设备污损等多重因素,纸张生产时会产生性能与表观等层面质量问题,从而影响纸张使用效果,降低经济效益。可见,纸张生产质量检测是造纸过程中至关重要的环节。而传统纸张生产质量人工检测方法实施效果不甚理... 由于外界环境污染、操作不当、设备污损等多重因素,纸张生产时会产生性能与表观等层面质量问题,从而影响纸张使用效果,降低经济效益。可见,纸张生产质量检测是造纸过程中至关重要的环节。而传统纸张生产质量人工检测方法实施效果不甚理想,效率也相对较低。对此,亟需引进自动化检测方法,从而改善检测效率,稳定检测水平,减少人工消耗。基于此,通过近红外光谱采集预处理试样,基于SVM算法(支持向量机)搭建模型并选择合适的惩罚系数与函数参数,以此实现纸张生产质量自动化检测。此算法不仅可减少模型参数数量,降低训练样本数量要求,适合小批量纸张生产质量检测,而且检测效率与正确率较高,模型性能表现优异。 展开更多
关键词 svm算法 纸张生产质量 表观质量 性能缺陷 自动化检测
下载PDF
基于改进海鸥算法优化SVM的变压器故障诊断方法
18
作者 时宇辉 袁至 +1 位作者 王维庆 孙汝羿 《科学技术与工程》 北大核心 2024年第28期12169-12176,共8页
变压器故障诊断率不足一直是制约着电网运行安全和效率低下的关键问题。为解决这一问题,提出基于改进海鸥算法优化支持向量机(improved seagull optimization algorithm support vector machine,ISOA-SVM)的变压器故障诊断方法。首先开... 变压器故障诊断率不足一直是制约着电网运行安全和效率低下的关键问题。为解决这一问题,提出基于改进海鸥算法优化支持向量机(improved seagull optimization algorithm support vector machine,ISOA-SVM)的变压器故障诊断方法。首先开始构建SVM的油中溶解气体分析的故障诊断模型并通过核主成分分析(kernel principal component analysis,KPCA)对油中数据处理;其次通过ISOA寻找到SVM的最优核函数参数和惩罚系数;最后将数据归一化输入ISOA-SVM模型进行诊断,判断变压器的运行状态,并将结果与其他算法优化模型进行比较,仿真结果显示,该模型故障检测方法在识别故障速度以及识别精度上明显优于其他模型,有助于保证变压器的稳定运行。 展开更多
关键词 变压器 核主成分分析(KPCA) 支持向量机(svm) 优化海鸥算法 故障诊断
下载PDF
基于PSO-SVM的Φ-OTDR系统模式识别研究
19
作者 朱宗玖 王宁 《科学技术与工程》 北大核心 2024年第12期5023-5029,共7页
针对相位敏感光时域反射仪(phase sensitive optical time domain reflectometer,Φ-OTDR)系统中误报率高的问题,提出一种多域特征提取与粒子群算法优化支持向量机(particle swarm optimization-support vector machine,PSO-SVM)相结合... 针对相位敏感光时域反射仪(phase sensitive optical time domain reflectometer,Φ-OTDR)系统中误报率高的问题,提出一种多域特征提取与粒子群算法优化支持向量机(particle swarm optimization-support vector machine,PSO-SVM)相结合的模式识别算法。首先,对原始信号进行差分处理后提取时域特征,并利用小波包分解方法,通过验证不同分解层数下的事件分类准确率,设定最优分解层数为6层,提取差分信号的能量特征。然后以SVM分类器为基础,利用PSO算法优化SVM分类器参数,提高光纤振动信号识别准确率。最后利用Φ-OTDR事件数据集进行验证,实验结果表明,该模式识别算法达到了95.6%的振动事件分类准确率。 展开更多
关键词 相位敏感光时域反射仪(Φ-OTDR) 小波包分解 粒子群算法(PSO) 支持向量机(svm) 模式识别
下载PDF
基于SVM算法的区域农田灌溉短期用水量预测方法 被引量:3
20
作者 陈云 《现代农业科技》 2024年第6期173-175,181,共4页
运用常规方法对区域农田灌溉短期用水量预测时易出现预测数据误差大、预测过程复杂等问题。本文以黄河流域某市东南方向的农田为研究对象,设计了基于SVM算法的区域农田灌溉短期用水量预测方法。基于SVM算法选择用水量特征,选取一对一的... 运用常规方法对区域农田灌溉短期用水量预测时易出现预测数据误差大、预测过程复杂等问题。本文以黄河流域某市东南方向的农田为研究对象,设计了基于SVM算法的区域农田灌溉短期用水量预测方法。基于SVM算法选择用水量特征,选取一对一的构造方法将农田灌溉短期用水量数据分为两个类别。通过SVM算法中支持向量机分类功能获取农田灌溉短期用水量特征子集,并在此基础上根据特征子集运用预测模型进行用水量预测。因为用水量序列波动性较强,所以将GM(1,N)模型与机器学习算法LSSVR模型相结合来进行用水量预测,并确定模型评价指标。结果表明,基于SVM算法的区域农田灌溉短期用水量预测方法误差在允许范围内,且在农业中具有可使用性。 展开更多
关键词 svm算法 农田灌溉 用水量预测
下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部