期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
支持向量机算法用于癌症数据建模
被引量:
2
1
作者
吴疆
董婷
《科学技术与工程》
2007年第20期5363-5365,共3页
支持向量机算法(Support Vector Machine)是基于统计学习理论(SLT)发展起来的新一代机器学习方法,并被成功地应用到很多模式识别问题中。文中支持向量机分类算法用于卵巢癌病变与非卵巢癌病变质谱数据建模。对卵巢癌数据进行判别预测,...
支持向量机算法(Support Vector Machine)是基于统计学习理论(SLT)发展起来的新一代机器学习方法,并被成功地应用到很多模式识别问题中。文中支持向量机分类算法用于卵巢癌病变与非卵巢癌病变质谱数据建模。对卵巢癌数据进行判别预测,预报正确率达到98%。通过与KNN、神经网络等算法的预报结果相比较,其预报能力强于KNN、神经网络算法在这个问题中的应用,为支持向量机算法可以应用于癌症疾病辅助检测提供一例证。
展开更多
关键词
支持向量机
核函数
癌症数据
下载PDF
职称材料
题名
支持向量机算法用于癌症数据建模
被引量:
2
1
作者
吴疆
董婷
机构
榆林学院信息技术系
榆林学院计算机与网络工程系
出处
《科学技术与工程》
2007年第20期5363-5365,共3页
文摘
支持向量机算法(Support Vector Machine)是基于统计学习理论(SLT)发展起来的新一代机器学习方法,并被成功地应用到很多模式识别问题中。文中支持向量机分类算法用于卵巢癌病变与非卵巢癌病变质谱数据建模。对卵巢癌数据进行判别预测,预报正确率达到98%。通过与KNN、神经网络等算法的预报结果相比较,其预报能力强于KNN、神经网络算法在这个问题中的应用,为支持向量机算法可以应用于癌症疾病辅助检测提供一例证。
关键词
支持向量机
核函数
癌症数据
Keywords
svm kernel function cancer date
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
支持向量机算法用于癌症数据建模
吴疆
董婷
《科学技术与工程》
2007
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部