期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于海量数据的不平衡SVM增量学习的钓鱼网站检测方法 被引量:1
1
作者 叶志雄 王丹弘 《电信工程技术与标准化》 2016年第12期26-31,共6页
钓鱼网站每年在电子商务、通信、银行等领域给用户造成极大损失,成功有效的防范钓鱼网站成为一项艰巨任务。本文通过对实际数据的分析,提取了URL相关特点、网页文本内容两方面特征描述网页,然后对不同特征构建相应分类器,根据增量学习... 钓鱼网站每年在电子商务、通信、银行等领域给用户造成极大损失,成功有效的防范钓鱼网站成为一项艰巨任务。本文通过对实际数据的分析,提取了URL相关特点、网页文本内容两方面特征描述网页,然后对不同特征构建相应分类器,根据增量学习思想优化各分类器,提升算法在线学习能力。最后采用分类集成的方法综合各个分类器的预测结果,达到对钓鱼网站在线智能检测的目标。实验表明,集成分类具有良好的在线学习能力和泛化能力。 展开更多
关键词 增量学习 钓鱼网站 不平衡svm方法 集成分类
下载PDF
基于毫米波雷达的舱内儿童遗留检测系统设计和验证
2
作者 祁淼 《时代汽车》 2023年第8期113-115,共3页
为了保护儿童避免被单独遗留在舱内,提出了基于毫米波雷达的传感器的检测方法。本方法采集毫米波多普勒效应产生的时域和频域信息,在LC-KSVD算法中加入主成分分析和随机森林的降维方法提取特征,对特征最组合。将组合的特征用SVM做分类,... 为了保护儿童避免被单独遗留在舱内,提出了基于毫米波雷达的传感器的检测方法。本方法采集毫米波多普勒效应产生的时域和频域信息,在LC-KSVD算法中加入主成分分析和随机森林的降维方法提取特征,对特征最组合。将组合的特征用SVM做分类,区分出存在和不存在儿童的场景。实验部分根据用车习惯,收集设计了正样本的采集和负样本的采集。实验表明,与同类的研究相比,本方法有更好的环境适应性可以避免相机等传统方法的局限性。 展开更多
关键词 毫米波雷达 LC-KSVD算法 儿童检测 svm分类
下载PDF
星载激光雷达云和气溶胶分类反演算法研究 被引量:5
3
作者 李明阳 范萌 +4 位作者 陶金花 苏林 吴桐 陈良富 张自力 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第2期383-391,共9页
激光探测对于获取云和气溶胶的垂直廓线,研究大气中云和气溶胶的垂直分布特征以及对全球气候变化的影响意义重大。而星载大气激光雷达云气溶胶分类算法的研究,对于激光雷达数据的参数反演及应用极为重要。针对激光条件下探测的云和气溶... 激光探测对于获取云和气溶胶的垂直廓线,研究大气中云和气溶胶的垂直分布特征以及对全球气候变化的影响意义重大。而星载大气激光雷达云气溶胶分类算法的研究,对于激光雷达数据的参数反演及应用极为重要。针对激光条件下探测的云和气溶胶特有的光学信息和空间分布,结合概率统计与机器学习算法,提出了一种对于云/气溶胶、云相态及气溶胶子类型识别的分类算法,实现了星载激光雷达的大气特征层快速、有效分类。算法采用中国地区2016年CALIOP的观测数据作为样本数据,主要由三部分组成:(1)基于激光探测的云和气溶胶层不同的光学特性以及地理空间分布特征,分别构建了云和气溶胶的γ532,χ,δ,Z和lat的五维概率密度函数,以此为基础构建云气溶胶的分类置信函数,并基于此实现了云和气溶胶类型的反演;(2)选取支持向量机(SVM)作为随机朝向冰晶粒子(ROI)和水云分类的算法模型基础,结合云层的γ532,χ,δZ和云顶温度T的概率密度函数构建ROI,水平朝向冰晶粒子(HOI)和水云的分类置信函数以修正SVM误分的特征层以及筛选出水云中少部分的HOI冰云,获得云相态的分类结果;(3)以各气溶胶子类型的光学以及空间分布特性为基础,采用决策树策略的气溶胶子类型识别算法实现了对气溶胶子类型的区分,完成气溶胶子类型的识别。利用现有CALIOP观测结果作为样本数据构建分类数据库,避免了对于地面以及航测数据的依赖,而机器学习则大大简化了算法的实现过程,使得云气溶胶分类更加高效。算法结果与正交极化云气溶胶激光雷达垂直特征层分布数据(CALIPSO VFM)产品对比分析:云层有98.51%一致性,气溶胶有88.43%的一致性,且白天比夜间一致性高。对于云相态分类,可以有效区分出水云和冰云,其中二者水云一致性高达93.44%。在气溶胶子类型反演结果中,可以准确识别出大多数气溶胶特征层子类型。霾、沙尘以及晴空三种典型情况下的反演结果均与CALIOP VFM产品数据具有较好的一致性。其中,霾天的大部分煤烟型以及污染型(污染沙尘以及污染大陆)气溶胶反演结果与VFM具有较好的一致性。沙尘天也能够获得较好的沙尘以及污染沙尘的结果。晴空为数不多的气溶胶层也取得了较为一致的结果。对于实现的星载大气激光雷达特征层分类算法,针对CALIOP激光测量的云气溶胶层的分类进行了重要的改进,在保证一定精度的基础上,简化了算法,提高了数据处理的效率,在下一步工作中,将分别构建不同时段和季节的分类模型以及提高两种不同偏振特性的冰云和气溶胶子类型的分类精度。 展开更多
关键词 星载激光雷达 云和气溶胶分类 概率密度函数 支持向量机 决策树
下载PDF
EMD和SVM结合的脑电信号分类方法 被引量:10
4
作者 李淑芳 周卫东 +2 位作者 蔡冬梅 刘凯 赵建林 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2011年第5期891-894,共4页
脑电(EEG)癫痫波的自动检测与分类在临床医学上具有重要意义。针对EEG信号的非平稳特点,本文提出了一种基于经验模式分解(EMD)和支持向量机(SVM)的EEG分类方法。首先利用EMD将EEG信号分成多个经验模式分量,然后提取有效特征,最后用SVM对... 脑电(EEG)癫痫波的自动检测与分类在临床医学上具有重要意义。针对EEG信号的非平稳特点,本文提出了一种基于经验模式分解(EMD)和支持向量机(SVM)的EEG分类方法。首先利用EMD将EEG信号分成多个经验模式分量,然后提取有效特征,最后用SVM对EEG信号进行分类。结果表明,该方法对癫痫发作间歇期和发作期EEG的分类效果比较理想,识别率达到99%。 展开更多
关键词 脑电癫痫波 经验模式分解 支持向量机 分类
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部