期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于图像识别的智能下棋机器人 被引量:1
1
作者 张猛 蒋涛 高琴 《物联网技术》 2019年第3期87-90,共4页
采用MK60单片机作为智能下棋机器人的主控单元,控制气泵配合吸盘吸取、放置棋子。利用OpenCV视觉库进行图像处理,完成目标识别。算法上采用HOG特征算法、机器学习SVM算法,经过PID闭环运动控制,实现智能下棋机器人在棋盘上移动摆放及&qu... 采用MK60单片机作为智能下棋机器人的主控单元,控制气泵配合吸盘吸取、放置棋子。利用OpenCV视觉库进行图像处理,完成目标识别。算法上采用HOG特征算法、机器学习SVM算法,经过PID闭环运动控制,实现智能下棋机器人在棋盘上移动摆放及"八皇后"规则位置的摆放。 展开更多
关键词 单片机 图像识别 PID控制 HOG特征算法 机器学习svm算法 机器
下载PDF
MOBILE GEO-LOCATION ALGORITHM BASED ON LS-SVM
2
作者 SunGuolin GuoWei 《Journal of Electronics(China)》 2005年第4期351-356,共6页
Support Vector Machine (SVM) is a powerful methodology for solving problems in non-linear classification, function estimation and density estimation, which has also led to many other recent developments in kernel base... Support Vector Machine (SVM) is a powerful methodology for solving problems in non-linear classification, function estimation and density estimation, which has also led to many other recent developments in kernel based methods in general. This paper presents a highaccuracy and fault-tolerant SVM for the mobile geo-location problem, which is an important component of pervasive computing. Simulation results show its basic location performance, and illustrate impacts of the number of training samples and training area on test location error. 展开更多
关键词 Mobile geo-location Least Squares Support Vector Machines (LS-svm) Machine learning
下载PDF
基于深度图像HOG特征的实时手势识别方法 被引量:6
3
作者 VanBang L E 朱煜 +1 位作者 赵江坤 陈宁 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期698-702,共5页
手势识别是模式识别领域的一个热点研究方向。提出了一种利用Kinect传感器深度图像进行手势分割的方法,并研究了基于灰度图像HOG特征的手势识别模型;深入研究了HOG特征,分析其特征向量特点,探讨了不同特征维数对训练机的影响及处理效率... 手势识别是模式识别领域的一个热点研究方向。提出了一种利用Kinect传感器深度图像进行手势分割的方法,并研究了基于灰度图像HOG特征的手势识别模型;深入研究了HOG特征,分析其特征向量特点,探讨了不同特征维数对训练机的影响及处理效率;通过SVM机器学习方法实现手势的分类识别,经过对大量实验样本的优化训练,获得了最优SVM参数,并进行分析、对比识别率。本文方法维数少、识别率高、运行速度快、性能稳定,能满足实时性手势识别的要求。 展开更多
关键词 KINECT 深度图像 HOG特征 svm机器学习 手势识别
下载PDF
网络青年亚文化的“中心化”:认知、行动与结构——基于“中国青年网民社会心态调查(2009—2021)”的研究 被引量:8
4
作者 郑雯 陈李伟 桂勇 《社会科学辑刊》 CSSCI 北大核心 2022年第5期199-207,共9页
依托“中国青年网民社会心态调查(2009—2021)”基于监督型机器学习(SVM)的大数据分析,探索青年亚文化的整体发展趋势与网络文化的结构特征。研究发现网络亚文化在青年群体内部形成更加统一的认知框架;在外部行动中更加主动地冲击主流文... 依托“中国青年网民社会心态调查(2009—2021)”基于监督型机器学习(SVM)的大数据分析,探索青年亚文化的整体发展趋势与网络文化的结构特征。研究发现网络亚文化在青年群体内部形成更加统一的认知框架;在外部行动中更加主动地冲击主流文化,论争性、对抗性增强;其参与者具有较为集中的身份指征、相对稳定的群体结构,构成了中国网络青年亚文化以教育程度聚类的独特景观。认知一致性、行动对抗性和结构聚集性推动网络青年亚文化不断“中心化”,推动网络文化结构整体转型,在“心灵港湾”和“赛博战场”的龃龉中与主流文化持续互动。 展开更多
关键词 青年亚文化 网络亚文化 中国青年网民社会心态调查 监督型机器学习(svm) 大数据分析
下载PDF
On-line least squares support vector machine algorithm in gas prediction 被引量:21
5
作者 ZHAO Xiao-hu WANG Gang ZHAO Ke-ke TAN De-jian 《Mining Science and Technology》 EI CAS 2009年第2期194-198,共5页
Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squ... Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squares support vector machine(LS-SVM) algorithm is an improved algorithm of SVM.But the common LS-SVM algorithm,used directly in safety predictions,has some problems.We have first studied gas prediction problems and the basic theory of LS-SVM.Given these problems,we have investigated the affect of the time factor about safety prediction and present an on-line prediction algorithm,based on LS-SVM.Finally,given our observed data,we used the on-line algorithm to predict gas emissions and used other related algorithm to compare its performance.The simulation results have verified the validity of the new algorithm. 展开更多
关键词 LS-svm GAS on-line learning PREDICTION
下载PDF
Performance analysis of new word weighting procedures for opinion mining 被引量:2
6
作者 G.R.BRINDHA P.SWAMINATHAN B.SANTHI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第11期1186-1198,共13页
The proliferation of forums and blogs leads to challenges and opportunities for processing large amounts of information. The information shared on various topics often contains opinionated words which are qualitative ... The proliferation of forums and blogs leads to challenges and opportunities for processing large amounts of information. The information shared on various topics often contains opinionated words which are qualitative in nature. These qualitative words need statistical computations to convert them into useful quantitative data. This data should be processed properly since it expresses opinions. Each of these opinion bearing words differs based on the significant meaning it conveys. To process the linguistic meaning of words into data and to enhance opinion mining analysis, we propose a novel weighting scheme, referred to as inferred word weighting(IWW). IWW is computed based on the significance of the word in the document(SWD) and the significance of the word in the expression(SWE) to enhance their performance. The proposed weighting methods give an analytic view and provide appropriate weights to the words compared to existing methods. In addition to the new weighting methods, another type of checking is done on the performance of text classification by including stop-words. Generally, stop-words are removed in text processing. When this new concept of including stop-words is applied to the proposed and existing weighting methods, two facts are observed:(1) Classification performance is enhanced;(2) The outcome difference between inclusion and exclusion of stop-words is smaller in the proposed methods, and larger in existing methods. The inferences provided by these observations are discussed. Experimental results of the benchmark data sets show the potential enhancement in terms of classification accuracy. 展开更多
关键词 Inferred word weight Opinion mining Supervised classification Support vector machine(svm Machine learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部