Support Vector Machine (SVM) is a powerful methodology for solving problems in non-linear classification, function estimation and density estimation, which has also led to many other recent developments in kernel base...Support Vector Machine (SVM) is a powerful methodology for solving problems in non-linear classification, function estimation and density estimation, which has also led to many other recent developments in kernel based methods in general. This paper presents a highaccuracy and fault-tolerant SVM for the mobile geo-location problem, which is an important component of pervasive computing. Simulation results show its basic location performance, and illustrate impacts of the number of training samples and training area on test location error.展开更多
Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squ...Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squares support vector machine(LS-SVM) algorithm is an improved algorithm of SVM.But the common LS-SVM algorithm,used directly in safety predictions,has some problems.We have first studied gas prediction problems and the basic theory of LS-SVM.Given these problems,we have investigated the affect of the time factor about safety prediction and present an on-line prediction algorithm,based on LS-SVM.Finally,given our observed data,we used the on-line algorithm to predict gas emissions and used other related algorithm to compare its performance.The simulation results have verified the validity of the new algorithm.展开更多
The proliferation of forums and blogs leads to challenges and opportunities for processing large amounts of information. The information shared on various topics often contains opinionated words which are qualitative ...The proliferation of forums and blogs leads to challenges and opportunities for processing large amounts of information. The information shared on various topics often contains opinionated words which are qualitative in nature. These qualitative words need statistical computations to convert them into useful quantitative data. This data should be processed properly since it expresses opinions. Each of these opinion bearing words differs based on the significant meaning it conveys. To process the linguistic meaning of words into data and to enhance opinion mining analysis, we propose a novel weighting scheme, referred to as inferred word weighting(IWW). IWW is computed based on the significance of the word in the document(SWD) and the significance of the word in the expression(SWE) to enhance their performance. The proposed weighting methods give an analytic view and provide appropriate weights to the words compared to existing methods. In addition to the new weighting methods, another type of checking is done on the performance of text classification by including stop-words. Generally, stop-words are removed in text processing. When this new concept of including stop-words is applied to the proposed and existing weighting methods, two facts are observed:(1) Classification performance is enhanced;(2) The outcome difference between inclusion and exclusion of stop-words is smaller in the proposed methods, and larger in existing methods. The inferences provided by these observations are discussed. Experimental results of the benchmark data sets show the potential enhancement in terms of classification accuracy.展开更多
文摘Support Vector Machine (SVM) is a powerful methodology for solving problems in non-linear classification, function estimation and density estimation, which has also led to many other recent developments in kernel based methods in general. This paper presents a highaccuracy and fault-tolerant SVM for the mobile geo-location problem, which is an important component of pervasive computing. Simulation results show its basic location performance, and illustrate impacts of the number of training samples and training area on test location error.
文摘Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squares support vector machine(LS-SVM) algorithm is an improved algorithm of SVM.But the common LS-SVM algorithm,used directly in safety predictions,has some problems.We have first studied gas prediction problems and the basic theory of LS-SVM.Given these problems,we have investigated the affect of the time factor about safety prediction and present an on-line prediction algorithm,based on LS-SVM.Finally,given our observed data,we used the on-line algorithm to predict gas emissions and used other related algorithm to compare its performance.The simulation results have verified the validity of the new algorithm.
文摘The proliferation of forums and blogs leads to challenges and opportunities for processing large amounts of information. The information shared on various topics often contains opinionated words which are qualitative in nature. These qualitative words need statistical computations to convert them into useful quantitative data. This data should be processed properly since it expresses opinions. Each of these opinion bearing words differs based on the significant meaning it conveys. To process the linguistic meaning of words into data and to enhance opinion mining analysis, we propose a novel weighting scheme, referred to as inferred word weighting(IWW). IWW is computed based on the significance of the word in the document(SWD) and the significance of the word in the expression(SWE) to enhance their performance. The proposed weighting methods give an analytic view and provide appropriate weights to the words compared to existing methods. In addition to the new weighting methods, another type of checking is done on the performance of text classification by including stop-words. Generally, stop-words are removed in text processing. When this new concept of including stop-words is applied to the proposed and existing weighting methods, two facts are observed:(1) Classification performance is enhanced;(2) The outcome difference between inclusion and exclusion of stop-words is smaller in the proposed methods, and larger in existing methods. The inferences provided by these observations are discussed. Experimental results of the benchmark data sets show the potential enhancement in terms of classification accuracy.