期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
支持向量机方法作温度预报试验 被引量:7
1
作者 陈晓燕 赵玉金 +2 位作者 孙文英 张丽芬 杨玲 《贵州气象》 2006年第1期31-33,共3页
SVM(SupportVectorM ach ines)方法独特新颖,具有坚实的理论支撑;其方法依据关键样本(支持向量)来建立最终的决策函数,与传统的基于确定因子的权重系数来明确表达各个因子的权重组合及预报对象变化的常规统计方法有显著的区别。作为对... SVM(SupportVectorM ach ines)方法独特新颖,具有坚实的理论支撑;其方法依据关键样本(支持向量)来建立最终的决策函数,与传统的基于确定因子的权重系数来明确表达各个因子的权重组合及预报对象变化的常规统计方法有显著的区别。作为对一种新的数值预报产品的释用方法尝试,利用欧洲中心数值产品及兴义市历年温度资料,利用支持向量机方法作了兴义市24h平均温度预报试验,其结果显示出了该方法有一定的预报能力。 展开更多
关键词 svm预报模型 温度预报 试验效果
下载PDF
利用支持向量机方法预报那曲县月降水量
2
作者 央美 达瓦泽仁 次嘎 《西藏科技》 2012年第2期57-59,共3页
支持向量机(Support Vector Machines)方法,简称SVM方法。SVM方法是计算机学习的一种新方法,是基于历史数据建立预报预测模型的有效工具。这一方法数学推导严密,理论基础坚实,已经成为预测预报、模式识别、计算智能等领域的热点技术,受... 支持向量机(Support Vector Machines)方法,简称SVM方法。SVM方法是计算机学习的一种新方法,是基于历史数据建立预报预测模型的有效工具。这一方法数学推导严密,理论基础坚实,已经成为预测预报、模式识别、计算智能等领域的热点技术,受到了国内外的广泛关注。作为月降水定量预报方法的尝试,利用那曲县及安多县的月平均常规气象资料及74个环流场资料,利用国家局陈永义老师等开发的支持向量机学习建模预报软件平台(SVM2.0)作了那曲县月降水量预报试验,其结果显示出了该方法有一定的预报能力。 展开更多
关键词 svm预报模型 月降水预报 试验效果
下载PDF
Support vector machine forecasting method improved by chaotic particle swarm optimization and its application 被引量:11
3
作者 李彦斌 张宁 李存斌 《Journal of Central South University》 SCIE EI CAS 2009年第3期478-481,共4页
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for... By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects. 展开更多
关键词 chaotic searching particle swarm optimization (PSO) support vector machine svm short term load forecast
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部