SVM(SupportVectorM ach ines)方法独特新颖,具有坚实的理论支撑;其方法依据关键样本(支持向量)来建立最终的决策函数,与传统的基于确定因子的权重系数来明确表达各个因子的权重组合及预报对象变化的常规统计方法有显著的区别。作为对...SVM(SupportVectorM ach ines)方法独特新颖,具有坚实的理论支撑;其方法依据关键样本(支持向量)来建立最终的决策函数,与传统的基于确定因子的权重系数来明确表达各个因子的权重组合及预报对象变化的常规统计方法有显著的区别。作为对一种新的数值预报产品的释用方法尝试,利用欧洲中心数值产品及兴义市历年温度资料,利用支持向量机方法作了兴义市24h平均温度预报试验,其结果显示出了该方法有一定的预报能力。展开更多
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for...By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects.展开更多
文摘SVM(SupportVectorM ach ines)方法独特新颖,具有坚实的理论支撑;其方法依据关键样本(支持向量)来建立最终的决策函数,与传统的基于确定因子的权重系数来明确表达各个因子的权重组合及预报对象变化的常规统计方法有显著的区别。作为对一种新的数值预报产品的释用方法尝试,利用欧洲中心数值产品及兴义市历年温度资料,利用支持向量机方法作了兴义市24h平均温度预报试验,其结果显示出了该方法有一定的预报能力。
基金Project(70572090) supported by the National Natural Science Foundation of China
文摘By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects.