期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于集合预报和支持向量机的中期强降雨集成预报试验
被引量:
15
1
作者
黄威
牛若芸
《气象》
CSCD
北大核心
2017年第9期1110-1116,共7页
本文基于欧洲中期天气预报中心(ECMWF)和美国国家环境预报中心(NCEP)集合预报资料和支持向量机(SVM)回归方法建立了多模式集成的动力-统计客观预报模型(SVM-多模式集成预报),继而选用2012年5—9月(共计153 d)发生在淮河流域及其以南地...
本文基于欧洲中期天气预报中心(ECMWF)和美国国家环境预报中心(NCEP)集合预报资料和支持向量机(SVM)回归方法建立了多模式集成的动力-统计客观预报模型(SVM-多模式集成预报),继而选用2012年5—9月(共计153 d)发生在淮河流域及其以南地区的大雨和暴雨开展了回报试验,并将所得预报结果与ECMWF的控制预报和集合平均预报进行了多角度比对评估。结果表明:在中期预报时效(4~7 d),SVM-多模式集成预报方法对2012年5—9月大雨和暴雨的预报效果最优,尤其对暴雨预报准确率明显提高,其优势主要体现在对强降雨中心分布范围和强度的预报更接近实况。
展开更多
关键词
svm-多模式集成
强降雨
中期预报
下载PDF
职称材料
题名
基于集合预报和支持向量机的中期强降雨集成预报试验
被引量:
15
1
作者
黄威
牛若芸
机构
国家气象中心
出处
《气象》
CSCD
北大核心
2017年第9期1110-1116,共7页
基金
国家重点基础研究发展计划(973计划)(2012CB417204)
国家科技支撑计划(2015BAC03B02)
国家重点研发计划(2016YFC0402702)共同助资
文摘
本文基于欧洲中期天气预报中心(ECMWF)和美国国家环境预报中心(NCEP)集合预报资料和支持向量机(SVM)回归方法建立了多模式集成的动力-统计客观预报模型(SVM-多模式集成预报),继而选用2012年5—9月(共计153 d)发生在淮河流域及其以南地区的大雨和暴雨开展了回报试验,并将所得预报结果与ECMWF的控制预报和集合平均预报进行了多角度比对评估。结果表明:在中期预报时效(4~7 d),SVM-多模式集成预报方法对2012年5—9月大雨和暴雨的预报效果最优,尤其对暴雨预报准确率明显提高,其优势主要体现在对强降雨中心分布范围和强度的预报更接近实况。
关键词
svm-多模式集成
强降雨
中期预报
Keywords
SVM multi-model integration, heavy rain, medium-term forecast
分类号
P456 [天文地球—大气科学及气象学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于集合预报和支持向量机的中期强降雨集成预报试验
黄威
牛若芸
《气象》
CSCD
北大核心
2017
15
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部