期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进萤火虫算法的SVM核参数选取
被引量:
4
1
作者
杨海
丁毅
沈海斌
《计算机应用与软件》
CSCD
2015年第6期256-258,287,共4页
支持向量机(SVM)是一种性能优异的机器学习算法,其核函数参数的选取对于建模精度以及泛化能力有着重要的影响。提出一种基于改进萤火虫算法的SVM核函数参数选取方法,通过改进萤火虫位置更新公式并在移动过程中引入亮度特征从而确定最佳...
支持向量机(SVM)是一种性能优异的机器学习算法,其核函数参数的选取对于建模精度以及泛化能力有着重要的影响。提出一种基于改进萤火虫算法的SVM核函数参数选取方法,通过改进萤火虫位置更新公式并在移动过程中引入亮度特征从而确定最佳的SVM核函数参数。实验表明,该算法选取的SVM核函数参数在保证分类器收敛性能的同时,提高了分类精度,取得了良好的优化效果。
展开更多
关键词
支持向量机
萤火虫算法
SVM核函数
下载PDF
职称材料
题名
基于改进萤火虫算法的SVM核参数选取
被引量:
4
1
作者
杨海
丁毅
沈海斌
机构
浙江大学超大规模集成电路设计研究所
西湖电子集团有限公司
出处
《计算机应用与软件》
CSCD
2015年第6期256-258,287,共4页
文摘
支持向量机(SVM)是一种性能优异的机器学习算法,其核函数参数的选取对于建模精度以及泛化能力有着重要的影响。提出一种基于改进萤火虫算法的SVM核函数参数选取方法,通过改进萤火虫位置更新公式并在移动过程中引入亮度特征从而确定最佳的SVM核函数参数。实验表明,该算法选取的SVM核函数参数在保证分类器收敛性能的同时,提高了分类精度,取得了良好的优化效果。
关键词
支持向量机
萤火虫算法
SVM核函数
Keywords
Support vector machine
GSO
svmkernel function
分类号
TP3 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进萤火虫算法的SVM核参数选取
杨海
丁毅
沈海斌
《计算机应用与软件》
CSCD
2015
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部