期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
LIBSVM,LIBLINEAR,SVM^(muticlass)比较研究
被引量:
8
1
作者
崔萌
张春雷
《电子技术(上海)》
2015年第6期1-5,共5页
SVM是Vapnik等人在统计学习理论基础上针对线性分类器提出的一种最佳分类准则,被广泛应用于文本、图像、语音等多个领域的分类问题。LIBSVM、LIBLINEAR、SVMmulticlass是基于支持向量机(SVM)原理集成的两类或多类分类器工具包,这三种工...
SVM是Vapnik等人在统计学习理论基础上针对线性分类器提出的一种最佳分类准则,被广泛应用于文本、图像、语音等多个领域的分类问题。LIBSVM、LIBLINEAR、SVMmulticlass是基于支持向量机(SVM)原理集成的两类或多类分类器工具包,这三种工具均实现了对数据的最优化分类,但彼此之间也有各自的特点。对于不同规模的数据集,即样本数与特征数比例不同的数据集的分类结果会存在差异。因此,本文从训练时间(Training Time),分类准确率(Precision)和采用的线性核函数(Kernel Function)这三个方面对各个工具包的分类性能进行详细分析,从而给出三种工具的各自的优缺点,以便为使用这三种工具的研究者们提供一些经验支持。实验结果表明,针对线性可分的数据,LIBLINEAR工具包具有训练时间短,分类准确率高的特点,非常适用于大规模数据的分类。
展开更多
关键词
LIBSVM
LIBLINEAR
svmmulticlass
比较研究
原文传递
题名
LIBSVM,LIBLINEAR,SVM^(muticlass)比较研究
被引量:
8
1
作者
崔萌
张春雷
机构
滨州医学院网络信息中心
滨州医学院解剖教研室
出处
《电子技术(上海)》
2015年第6期1-5,共5页
文摘
SVM是Vapnik等人在统计学习理论基础上针对线性分类器提出的一种最佳分类准则,被广泛应用于文本、图像、语音等多个领域的分类问题。LIBSVM、LIBLINEAR、SVMmulticlass是基于支持向量机(SVM)原理集成的两类或多类分类器工具包,这三种工具均实现了对数据的最优化分类,但彼此之间也有各自的特点。对于不同规模的数据集,即样本数与特征数比例不同的数据集的分类结果会存在差异。因此,本文从训练时间(Training Time),分类准确率(Precision)和采用的线性核函数(Kernel Function)这三个方面对各个工具包的分类性能进行详细分析,从而给出三种工具的各自的优缺点,以便为使用这三种工具的研究者们提供一些经验支持。实验结果表明,针对线性可分的数据,LIBLINEAR工具包具有训练时间短,分类准确率高的特点,非常适用于大规模数据的分类。
关键词
LIBSVM
LIBLINEAR
svmmulticlass
比较研究
Keywords
LIBSVM
LIBLINEAR
svmmulticlass
Comparison study
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
LIBSVM,LIBLINEAR,SVM^(muticlass)比较研究
崔萌
张春雷
《电子技术(上海)》
2015
8
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部