期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于word2vec和SVMperf的中文评论情感分类研究
被引量:
21
1
作者
张冬雯
杨鹏飞
许云峰
《计算机科学》
CSCD
北大核心
2016年第S1期418-421 447,共5页
利用有监督的机器学习的方法来对中文产品评论文本进行情感分类,该方法结合了word2vec和SVMperf两种工具。先由word2vec训练出语料中每个词语的词向量,通过计算相互之间的余弦距离来达到相似概念词语聚类的目的,通过相似特征聚类将高相...
利用有监督的机器学习的方法来对中文产品评论文本进行情感分类,该方法结合了word2vec和SVMperf两种工具。先由word2vec训练出语料中每个词语的词向量,通过计算相互之间的余弦距离来达到相似概念词语聚类的目的,通过相似特征聚类将高相似度领域词汇扩充到情感词典;再使用word2vec训练出词向量的高维度表示;然后采用主成分分析方法(PCA)对高维度向量进行降低维度处理,形成特征向量;最后使用两种方法抽取有效的情感特征,由SVMperf进行训练和预测,从而完成文本的情感分类。实验结果表明,采用相似概念聚类方法对词典进行扩充任务或情感分类任务都可以获得很好的效果。
展开更多
关键词
情感分类
word2vec
svmperf
语义特征
PCA
下载PDF
职称材料
题名
基于word2vec和SVMperf的中文评论情感分类研究
被引量:
21
1
作者
张冬雯
杨鹏飞
许云峰
机构
河北科技大学信息科学与工程学院
出处
《计算机科学》
CSCD
北大核心
2016年第S1期418-421 447,共5页
文摘
利用有监督的机器学习的方法来对中文产品评论文本进行情感分类,该方法结合了word2vec和SVMperf两种工具。先由word2vec训练出语料中每个词语的词向量,通过计算相互之间的余弦距离来达到相似概念词语聚类的目的,通过相似特征聚类将高相似度领域词汇扩充到情感词典;再使用word2vec训练出词向量的高维度表示;然后采用主成分分析方法(PCA)对高维度向量进行降低维度处理,形成特征向量;最后使用两种方法抽取有效的情感特征,由SVMperf进行训练和预测,从而完成文本的情感分类。实验结果表明,采用相似概念聚类方法对词典进行扩充任务或情感分类任务都可以获得很好的效果。
关键词
情感分类
word2vec
svmperf
语义特征
PCA
Keywords
Sentiment classification
Word2vec
svmperf
Semantic features
PCA
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于word2vec和SVMperf的中文评论情感分类研究
张冬雯
杨鹏飞
许云峰
《计算机科学》
CSCD
北大核心
2016
21
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部