期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Support vector machine regression(SVR)-based nonlinear modeling of radiometric transforming relation for the coarse-resolution data-referenced relative radiometric normalization(RRN) 被引量:1
1
作者 Jing Geng Wenxia Gan +2 位作者 Jinying Xu Ruqin Yang Shuliang Wang 《Geo-Spatial Information Science》 SCIE CSCD 2020年第3期237-247,I0004,共12页
Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating ... Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating the radiometric inconsistency.The radiometric trans-forming relation between the subject image and the reference image is an essential aspect of RRN.Aimed at accurate radiometric transforming relation modeling,the learning-based nonlinear regression method,Support Vector machine Regression(SVR)is used for fitting the complicated radiometric transforming relation for the coarse-resolution data-referenced RRN.To evaluate the effectiveness of the proposed method,a series of experiments are performed,including two synthetic data experiments and one real data experiment.And the proposed method is compared with other methods that use linear regression,Artificial Neural Network(ANN)or Random Forest(RF)for radiometric transforming relation modeling.The results show that the proposed method performs well on fitting the radiometric transforming relation and could enhance the RRN performance. 展开更多
关键词 support vector machine Regression(svr) non-linear radiometric transforming relation Relative Radiometric Normalization(RRN) multi-source data
原文传递
Performance Prediction of Carbon Fiber Protofilament Based on SAGA-SVR 被引量:1
2
作者 贺聪 任立红 丁永生 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期92-97,共6页
The existing optimized performance prediction of carbon fiber protofilament process model is still unable to meet the production needs. A way of performance prediction on carbon fiber protofilament was presented based... The existing optimized performance prediction of carbon fiber protofilament process model is still unable to meet the production needs. A way of performance prediction on carbon fiber protofilament was presented based on support vector regression( SVR) which was optimized by an optimization algorithm combining simulated annealing algorithm and genetic algorithm( SAGA-SVR). To verify the accuracy of the model,the carbon fiber protofilament production test data were analyzed and compared with BP neural network( BPNN). The results show that SAGA-SVR can predict the performance parameters of the carbon fiber protofilament accurately. 展开更多
关键词 support vector regression svr machine genetic algorithm( GA simulated annealing algorithm SA carbon fiber perforrmance prediction
下载PDF
Non-linear relationship between combustion kinetic parameters and coal quality 被引量:1
3
作者 Jian-guo YANG Xiao-long ZHANG Hong ZHAO Li SHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第5期344-352,共9页
Combustion kinetic parameters(i.e.,activation energy and frequency factor) of coal have been proven to relate closely to coal properties;however,the quantitative relationship between them still requires further study.... Combustion kinetic parameters(i.e.,activation energy and frequency factor) of coal have been proven to relate closely to coal properties;however,the quantitative relationship between them still requires further study.This paper adopts a support vector regression machine(SVR) to generate the models of the non-linear relationship between combustion kinetic parameters and coal quality.Kinetic analyses on the thermo-gravimetry(TG) data of 80 coal samples were performed to prepare training data and testing data for the SVR.The models developed were used in the estimation of the combustion kinetic parameters of ten testing samples.The predicted results showed that the root mean square errors(RMSEs) were 2.571 for the activation energy and 0.565 for the frequency factor in logarithmic form,respectively.TG curves defined by predicted kinetic parameters were fitted to the experimental data with a high degree of precision. 展开更多
关键词 Kinetic parameter Coal property Thermo-gravimetry(TG) support vector regression machine(svr) Differential evolution
原文传递
Anomaly detection of hot components in gas turbine based on frequent pattern extraction 被引量:2
4
作者 LIU JinFu ZHU LinHai +3 位作者 MA YuJia LIU Jiao ZHOU WeiXing YU DaRen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第4期567-586,共20页
Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the pe... Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the performance of hot components.However, during the early stages of a failure, the fault information is weak, and is simultaneously affected by various types of interference, such as the complex working conditions, ambient conditions, gradual performance degradation of the compressors and turbines, and noise. Additionally, inadequate effective information of the gas turbine also restricts the establishment of the detection model. To solve the above problems, this paper proposes an anomaly detection method based on frequent pattern extraction. A frequent pattern model(FPM) is applied to indicate the inherent regularity of change in EGT occurring from different types of interference. In this study, based on a genetic algorithm and support vector machine regression, the relationship model between the EGT and interference was tentatively built. The modeling accuracy was then further improved through the selection of the kernel function and training data. Experiments indicate that the optimal kernel function is linear and that the optimal training data should be balanced in addition to covering the appropriate range of operating conditions and ambient temperature. Furthermore, the thresholds based on the Pauta criterion that is automatically obtained during the modeling process, are used to determine whether hot components are operating abnormally. Moreover, the FPM is compared with the similarity theory, which demonstrates that the FPM can better suppress the effect of the component performance degradation and fuel heat value fluctuation. Finally, the effectiveness of the proposed method is validated on seven months of actual data obtained from a Titan130 gas turbine on an offshore oil platform. The results indicate that the proposed method can sensitively detect malfunctions in hot components during the early stages of a fault, and is robust to various types of interference. 展开更多
关键词 frequent pattern model(FPM) support vector machine regression(svr genetic algorithm(GA) gas turbine hot components anomaly detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部