Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating ...Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating the radiometric inconsistency.The radiometric trans-forming relation between the subject image and the reference image is an essential aspect of RRN.Aimed at accurate radiometric transforming relation modeling,the learning-based nonlinear regression method,Support Vector machine Regression(SVR)is used for fitting the complicated radiometric transforming relation for the coarse-resolution data-referenced RRN.To evaluate the effectiveness of the proposed method,a series of experiments are performed,including two synthetic data experiments and one real data experiment.And the proposed method is compared with other methods that use linear regression,Artificial Neural Network(ANN)or Random Forest(RF)for radiometric transforming relation modeling.The results show that the proposed method performs well on fitting the radiometric transforming relation and could enhance the RRN performance.展开更多
The existing optimized performance prediction of carbon fiber protofilament process model is still unable to meet the production needs. A way of performance prediction on carbon fiber protofilament was presented based...The existing optimized performance prediction of carbon fiber protofilament process model is still unable to meet the production needs. A way of performance prediction on carbon fiber protofilament was presented based on support vector regression( SVR) which was optimized by an optimization algorithm combining simulated annealing algorithm and genetic algorithm( SAGA-SVR). To verify the accuracy of the model,the carbon fiber protofilament production test data were analyzed and compared with BP neural network( BPNN). The results show that SAGA-SVR can predict the performance parameters of the carbon fiber protofilament accurately.展开更多
Combustion kinetic parameters(i.e.,activation energy and frequency factor) of coal have been proven to relate closely to coal properties;however,the quantitative relationship between them still requires further study....Combustion kinetic parameters(i.e.,activation energy and frequency factor) of coal have been proven to relate closely to coal properties;however,the quantitative relationship between them still requires further study.This paper adopts a support vector regression machine(SVR) to generate the models of the non-linear relationship between combustion kinetic parameters and coal quality.Kinetic analyses on the thermo-gravimetry(TG) data of 80 coal samples were performed to prepare training data and testing data for the SVR.The models developed were used in the estimation of the combustion kinetic parameters of ten testing samples.The predicted results showed that the root mean square errors(RMSEs) were 2.571 for the activation energy and 0.565 for the frequency factor in logarithmic form,respectively.TG curves defined by predicted kinetic parameters were fitted to the experimental data with a high degree of precision.展开更多
Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the pe...Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the performance of hot components.However, during the early stages of a failure, the fault information is weak, and is simultaneously affected by various types of interference, such as the complex working conditions, ambient conditions, gradual performance degradation of the compressors and turbines, and noise. Additionally, inadequate effective information of the gas turbine also restricts the establishment of the detection model. To solve the above problems, this paper proposes an anomaly detection method based on frequent pattern extraction. A frequent pattern model(FPM) is applied to indicate the inherent regularity of change in EGT occurring from different types of interference. In this study, based on a genetic algorithm and support vector machine regression, the relationship model between the EGT and interference was tentatively built. The modeling accuracy was then further improved through the selection of the kernel function and training data. Experiments indicate that the optimal kernel function is linear and that the optimal training data should be balanced in addition to covering the appropriate range of operating conditions and ambient temperature. Furthermore, the thresholds based on the Pauta criterion that is automatically obtained during the modeling process, are used to determine whether hot components are operating abnormally. Moreover, the FPM is compared with the similarity theory, which demonstrates that the FPM can better suppress the effect of the component performance degradation and fuel heat value fluctuation. Finally, the effectiveness of the proposed method is validated on seven months of actual data obtained from a Titan130 gas turbine on an offshore oil platform. The results indicate that the proposed method can sensitively detect malfunctions in hot components during the early stages of a fault, and is robust to various types of interference.展开更多
基金This research was funded by the National Natural Science Fund of China[grant number 41701415]Science fund project of Wuhan Institute of Technology[grant number K201724]Science and Technology Development Funds Project of Department of Transportation of Hubei Province[grant number 201900001].
文摘Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating the radiometric inconsistency.The radiometric trans-forming relation between the subject image and the reference image is an essential aspect of RRN.Aimed at accurate radiometric transforming relation modeling,the learning-based nonlinear regression method,Support Vector machine Regression(SVR)is used for fitting the complicated radiometric transforming relation for the coarse-resolution data-referenced RRN.To evaluate the effectiveness of the proposed method,a series of experiments are performed,including two synthetic data experiments and one real data experiment.And the proposed method is compared with other methods that use linear regression,Artificial Neural Network(ANN)or Random Forest(RF)for radiometric transforming relation modeling.The results show that the proposed method performs well on fitting the radiometric transforming relation and could enhance the RRN performance.
基金the Key Project of National Natural Science Foundation of China(No.61134009)Program for Changjiang Scholars and Innovation Research Team in University from the Ministry of Education,China(No.IRT1220)+1 种基金Specialized Research Fund for Shanghai Leading Talents,Project of the Shanghai Committee of Science and Technology,China(No.13JC1407500)the Fundamental Research Funds for the Central Universities,China(No.2232012A3-04)
文摘The existing optimized performance prediction of carbon fiber protofilament process model is still unable to meet the production needs. A way of performance prediction on carbon fiber protofilament was presented based on support vector regression( SVR) which was optimized by an optimization algorithm combining simulated annealing algorithm and genetic algorithm( SAGA-SVR). To verify the accuracy of the model,the carbon fiber protofilament production test data were analyzed and compared with BP neural network( BPNN). The results show that SAGA-SVR can predict the performance parameters of the carbon fiber protofilament accurately.
文摘Combustion kinetic parameters(i.e.,activation energy and frequency factor) of coal have been proven to relate closely to coal properties;however,the quantitative relationship between them still requires further study.This paper adopts a support vector regression machine(SVR) to generate the models of the non-linear relationship between combustion kinetic parameters and coal quality.Kinetic analyses on the thermo-gravimetry(TG) data of 80 coal samples were performed to prepare training data and testing data for the SVR.The models developed were used in the estimation of the combustion kinetic parameters of ten testing samples.The predicted results showed that the root mean square errors(RMSEs) were 2.571 for the activation energy and 0.565 for the frequency factor in logarithmic form,respectively.TG curves defined by predicted kinetic parameters were fitted to the experimental data with a high degree of precision.
文摘Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the performance of hot components.However, during the early stages of a failure, the fault information is weak, and is simultaneously affected by various types of interference, such as the complex working conditions, ambient conditions, gradual performance degradation of the compressors and turbines, and noise. Additionally, inadequate effective information of the gas turbine also restricts the establishment of the detection model. To solve the above problems, this paper proposes an anomaly detection method based on frequent pattern extraction. A frequent pattern model(FPM) is applied to indicate the inherent regularity of change in EGT occurring from different types of interference. In this study, based on a genetic algorithm and support vector machine regression, the relationship model between the EGT and interference was tentatively built. The modeling accuracy was then further improved through the selection of the kernel function and training data. Experiments indicate that the optimal kernel function is linear and that the optimal training data should be balanced in addition to covering the appropriate range of operating conditions and ambient temperature. Furthermore, the thresholds based on the Pauta criterion that is automatically obtained during the modeling process, are used to determine whether hot components are operating abnormally. Moreover, the FPM is compared with the similarity theory, which demonstrates that the FPM can better suppress the effect of the component performance degradation and fuel heat value fluctuation. Finally, the effectiveness of the proposed method is validated on seven months of actual data obtained from a Titan130 gas turbine on an offshore oil platform. The results indicate that the proposed method can sensitively detect malfunctions in hot components during the early stages of a fault, and is robust to various types of interference.