期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Impact Assessment of Land-Use Changes on Nutrient Load in Song Cau Watershed Using Soil and Water Assessment Tool (SWAT) Model
1
作者 D. B. Phan C.C. Wtu S. C. Hsieh 《Journal of Agricultural Science and Technology(B)》 2011年第2期223-231,共9页
The objective of this paper is to implement "Soil and Water Assessment Tool (SWAT)" model to assess the possible impact of land-use changes on nutrient yields from Song Cau watershed located in Northern Viet Nam. ... The objective of this paper is to implement "Soil and Water Assessment Tool (SWAT)" model to assess the possible impact of land-use changes on nutrient yields from Song Cau watershed located in Northern Viet Nam. Organic nitrogen (N) as well as phosphorus (P) output due to nonpoint source erosion was estimated through SWAT. Parameters governing the mechanics of streamflow discharge, sediment yield, nitrogen, and phosphorus output in SWAT were calibrated in a distributed fashion. A five-year period of record for nutrient was used for model calibration, while a four-year period was used for model validation. Comparing measured versus simulated average monthly total N, and P loads for the calibration and validation periods; respectively, we found that SWAT model performed reasonably well for Song Cau watershed. Simulation results showed that monthly Nash-Sutcliffe coefficient of Efficiency (NSE) ranged from 0.65 to 0.83, observation's standard deviation ratio (RSR) and percent bias (PBIAS) ranged from 0.41 to 0.58 and -36.12 to 2.78, respectively. Additionally, SWAT simulation results also showed that land-use changes caused significant percentage of changes in sediment yield, total N, and P loads within Song Cau watershed. 展开更多
关键词 soil and water Assessment tool swat land-use changes nutrient load.
下载PDF
Integrated Hydrological Modeling of the Godavari River Basin in Maharashtra Using the SWAT Model: Streamflow Simulation and Analysis
2
作者 Pallavi Saraf Dattatray Gangaram Regulwar 《Journal of Water Resource and Protection》 CAS 2024年第1期17-26,共10页
Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in M... Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in Maharashtra using the Soil and Water Assessment Tool (SWAT). SWAT is a process-based hydrological model used to predict water balance components, sediment levels, and nutrient contamination. In this research, we used integrated remote sensing and GIS data, including Digital Elevation Models (DEM), land use and land cover (LULC) maps, soil maps, and observed precipitation and temperature data, as input for developing the SWAT model to assess surface runoff in this large river basin. The Godavari River Basin under study was divided into 25 sub-basins, comprising 151 hydrological response units categorized by unique land cover, soil, and slope characteristics using the SWAT model. The model was calibrated and validated against observed runoff data for two time periods: 2003-2006 and 2007-2010 respectively. Model performance was assessed using the Nash-Sutcliffe efficiency (NSE) and the coefficient of determination (R2). The results show the effectiveness of the SWAT2012 model, with R2 value of 0.84 during calibration and 0.86 during validation. NSE values also ranged from 0.84 during calibration to 0.85 during validation. These findings enhance our understanding of surface runoff dynamics in the Godavari River Basin under study and highlight the suit-ability of the SWAT model for this region. 展开更多
关键词 soil and water Assessment tool (swat) Streamflow Hydrological modeling RAINFALL RUNOFF
下载PDF
Combining CLUE-S and SWAT Models to Forecast Land Use Change and Non-point Source Pollution Impact at a Watershed Scale in Liaoning Province, China 被引量:15
3
作者 LIU Miao LI Chunlin +3 位作者 HU Yuanman SUN Fengyun XU Yanyan CHEN Tan 《Chinese Geographical Science》 SCIE CSCD 2014年第5期540-550,共11页
Non-point source(NPS) pollution has become a major source of water pollution. A combination of models would provide the necessary direction and approaches designed to control NPS pollution through land use planning. I... Non-point source(NPS) pollution has become a major source of water pollution. A combination of models would provide the necessary direction and approaches designed to control NPS pollution through land use planning. In this study, NPS pollution load was simulated in urban planning, historic trends and ecological protection land use scenarios based on the Conversion of Land Use and its Effect at Small regional extent(CLUE-S) and Soil and Water Assessment Tool(SWAT) models applied to Hunhe-Taizi River Watershed, Liaoning Province, China. Total nitrogen(TN) and total phosphorus(TP) were chosen as NPS pollution indices. The results of models validation showed that CLUE-S and SWAT models were suitable in the study area. NPS pollution mainly came from dry farmland, paddy, rural and urban areas. The spatial distribution of TN and TP exhibited the same trend in 57 sub-catchments. The TN and TP had the highest NPS pollution load in the western and central plains, which concentrated the urban area and farm land. The NPS pollution load would increase in the urban planning and historic trends scenarios, and would be even higher in the urban planning scenario. However, the NPS pollution load decreased in the ecological protection scenario. The differences observed in the three scenarios indicated that land use had a degree of impact on NPS pollution, which showed that scientific and ecologically sound construction could effectively reduce the NPS pollution load in a watershed. This study provides a scientific method for conducting NPS pollution research at the watershed scale, a scientific basis for non-point source pollution control, and a reference for related policy making. 展开更多
关键词 Conversion of Land Use and its Effect at Small regional extent (CLUE-S) Hunhe-Taizi River watershed non-point source pollution soil and water Assessment tool swat
下载PDF
Integrating water use systems and soil and water conservation measures into a hydrological model of an Iranian Wadi system 被引量:1
4
作者 Nariman MAHMOODI Jens KIESEL +1 位作者 Paul D WAGNER Nicola FOHRER 《Journal of Arid Land》 SCIE CSCD 2020年第4期545-560,共16页
Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water u... Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water use systems(WUSs) which affect natural hydrological processes. In this study, WUSs and soil and water conservation measures(SWCMs) were integrated in a hydrological model of the Halilrood Basin in Iran. The Soil and Water Assessment Tool(SWAT) model was used to simulate the hydrological processes between 1993 and 2009 at daily time scale. To assess the importance of WUSs and SWCMs, we compared a model setup without WUSs and SWCMs(Default model) with a model setup with WUSs and SWCMs(WUS-SWCM model). When compared to the observed daily stream flow, the number of acceptable calibration runs as defined by the performance thresholds(Nash-Sutcliffe efficiency(NSE)≥0.68, –25%≤percent bias(PBIAS)≤25% and ratio of standard deviation(RSR)≤0.56) is 177 for the Default model and 1945 for the WUS-SWCM model. Also, the average Kling–Gupta efficiency(KGE) of acceptable calibration runs for the WUS-SWCM model is higher in both calibration and validation periods. When WUSs and SWCMs are implemented, surface runoff(between 30% and 99%) and water yield(between 0 and 18%) decreased in all sub-basins. Moreover, SWCMs lead to a higher contribution of groundwater flow to the channel and compensate for the extracted water by WUSs from the shallow aquifer. In summary, implementing WUSs and SWCMs in the SWAT model enhances model plausibility significantly. 展开更多
关键词 swat model stream flow Wadis multi-metric framework water use systems soil and water conservation measures Halilrood Basin
下载PDF
A Comparison of SWAT Model Calibration Techniques for Hydrological Modeling in the Ganga River Watershed 被引量:7
5
作者 Nikita Shivhare Prabhat Kumar Singh Dikshir Shyam Bihari Dwivedi 《Engineering》 2018年第5期643-652,共10页
The Ganga River, the longest river in India, is stressed by extreme anthropogenic activity and climate change, particularly in the Varanasi region. Anticipated climate changes and an expanding populace are expected to... The Ganga River, the longest river in India, is stressed by extreme anthropogenic activity and climate change, particularly in the Varanasi region. Anticipated climate changes and an expanding populace are expected to further impede the efficient use of water. In this study, hydrological modeling was applied to Soil and Water Assessment Tool (SWAT) modeling in the Ganga catchment, over a region of 15 621.612 km2 in the southern part of Uttar Pradesh. The primary goals of this study are: ① To test the execution and applicability of the SWAT model in anticipating runoff and sediment yield; and ② to compare and determine the best calibration algorithm among three popular algorithms-sequential uncertainty fitting version 2 (SUFI-2), the generalized likelihood uncertainty estimation (GLUE), and par-allel solution (ParaSol). The input data used in the SWAT were the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM), Landsat-8 satellite imagery, soil data, and daily meteorological data. The watershed of the study area was delineated into 46 sub-watersheds, and a land use/land cover (LULC) map and soil map were used to create hydrological response units (HRUs). Models utilizing SUFI- 2, GLUE, and ParaSol methods were constructed, and these algorithms were compared based on five cat-egories: their objective functions, the concepts used, their performances, the values of P-factors, and the values of R-factors. As a result, it was observed that SUFI-2 is a better performer than the other two algo-rithms for use in calibrating Indian watersheds, as this method requires fewer runs for a computational model and yields the best results among the three algorithms. ParaSol is the worst performer among the three algorithms. After calibrating using SUFI-2, five parameters including the effective channel hydraulic conductivity (CH_K2), the universal soil-loss equation (USLE) support parameter (USLE_P), Manning's n value for the main channel (CH_N2), the surface runoff lag time (SURLAG), and the available water capac-ity of the soil layer (SOL_AWC) were observed to be the most sensitive parameters for modeling the pre-sent watershed. It was also found that the maximum runoff occurred in sub-watershed number 40 (SW#40), while the maximum sediment yield was 50 t.a ^1 for SW#36, which comprised barren land. The average evapotranspiration for the basin was 411.55 mm.a ^1. The calibrated model can be utilized in future to facilitate investigation of the impacts of LULC, climate change, and soil erosion. 展开更多
关键词 Remote sensing Geographic information system soil and water Assessment tool Hydrological modeling SUFI-2 GLUE ParaSol Sediment yield
下载PDF
Use of SWAT to Model Impact of Climate Change on Sediment Yield and Agricultural Productivity in Western Oregon, USA
6
作者 G. W. Mueller-Warrant C. L. Phillips K. M. Trippe 《Open Journal of Modern Hydrology》 2019年第2期54-88,共35页
Climate change predictions for the Pacific Northwest region of the United States of America include increasing temperatures, intensification of winter precipitation, and a shift from mixed snow/rain to rain-dominant e... Climate change predictions for the Pacific Northwest region of the United States of America include increasing temperatures, intensification of winter precipitation, and a shift from mixed snow/rain to rain-dominant events, all of which may increase the risk of soil erosion and threaten agricultural and ecological productivity. Here we used the agricultural/environmental model SWAT with climate predictions from the Coupled Model Intercomparison Project 5 (CMIP5) “high CO2 emissions” scenario (RCP8.5) to study the impact of altered temperature and precipitation patterns on soil erosion and crop productivity in the Willamette River Basin of western Oregon. An ensemble of 10 climate models representing the full range in temperature and precipitation predictions of CIMP5 produced substantial increases in sediment yield, with differences between yearly averages for the final (2090-2099) and first (2010-2019) decades ranging from 3.9 to 15.2 MT&middot;ha-1 among models. Sediment yield in the worst case model (CanESM2) corresponded to loss of 1.5 - 2.7 mm&middot;soil&middot;y-1, equivalent to potentially stripping productive topsoil from the landscape in under two centuries. Most climate models predicted only small increases in precipitation (an average of 5.8% by the end of the 21st century) combined with large increases in temperature (an average of 0.05&deg;C&middot;y-1). We found a strong correlation between predicted temperature increases and sediment yield, with a regression model combining both temperature and precipitation effects describing 79% of the total variation in annual sediment yield. A critical component of response to increased temperature was reduced snowfall during high precipitation events in the wintertime. SWAT characterized years with less than basin-wide averages of 20 mm of precipitation falling as snow as likely to experience severe sediment loss for multiple crops/land uses. Mid-elevation sub-basins that are projected to shift from rain-snow transition to rain-dominant appear particularly vulnerable to sediment loss. Analyses of predicted crop yields indicated declining productivity for many commonly grown grass seed and cereal crops, along with increasing productivity for certain other crops. Adaptation by agriculture and forestry to warmer, more erosive conditions may include changes in selection of crop kinds and in production management practices. 展开更多
关键词 CLIMATE Change SEDIMENT Yield soil water Assessment tool swat Coupled model Intercomparison Project 5 CIMP5 Nash-Sutcliffe Efficiency NSE
下载PDF
Estimation of Pollutant Loads in Ardila Watershed Using the SWAT Model
7
作者 Anabela Durāoo Maria Manuela Morais +3 位作者 David Brito Pedro Chambel Leitā RM Fernandes Ramiro Neves 《Journal of Environmental Science and Engineering(B)》 2012年第10期1179-1191,共13页
Abstract: Excess of organic matter and nutrients in water promotes eutrophication process observed in the Ardila River. It was classified as much polluted being critical for Alqueva-Pedrogāo System. The aim of this ... Abstract: Excess of organic matter and nutrients in water promotes eutrophication process observed in the Ardila River. It was classified as much polluted being critical for Alqueva-Pedrogāo System. The aim of this study was to estimate the transported nutrients loads in a transboundary watershed using the SWAT (soil and water assessment tool) model and to determine the contribution of nutrients load in the entire watershed. Ardila watershed is about 3,711 km^2 extended from Spain (78%) to the eastern part of Portugal (22%). It was discretized into 32 sub-basins using automated delineation routine, and 174 hydrologic response units. Monthly average meteorological data (from 1947 to 1998) were used to generate daily values through the weather generator Model incorporated in SWAT. Real daily precipitation (from 1931 to 2003) was introduced. The model was calibrated and verified for flow (from 1950 to 2000) and nutrients (from 1981 to 1999). Model performance was evaluated using statistical parameters, such as NSE (Nash-Sutcliffe efficiency) and root mean square error (R2). Calibration and verification flow results showed a satisfactory agreement between simulated and measured monthly date from 1962 to 1972 (NSE = 0.8; R^2 = 0.9). The results showed that the most important diffuse pollution comes from the two the main tributary (Spain). The estimated nitrogen and phosphorous loads contribution per year was respectively 72% and 59% in Spain and 28% and 41% in Portugal. The SWAT model was revealed to be a useful tool for an integrated water management approach that might be improved taking into count the WFD (water framework directive). 展开更多
关键词 Diffuse pollution swat soil and water assessment tool model NUTRIENT integrated water management Ardilawatershed.
下载PDF
A Modified Groundwater Module in SWAT for Improved Streamflow Simulation in a Large, Arid Endorheic River Watershed in Northwest China 被引量:6
8
作者 JIN Xin HE Chansheng +1 位作者 ZHANG Lanhui ZHANG Baoqing 《Chinese Geographical Science》 SCIE CSCD 2018年第1期47-60,共14页
Interactions between surface water and groundwater are dynamic and complex in large endorheic river watersheds in Northwest China due to the influence of both irrigation practices and the local terrain. These interact... Interactions between surface water and groundwater are dynamic and complex in large endorheic river watersheds in Northwest China due to the influence of both irrigation practices and the local terrain. These interactions interchange numerous times throughout the middle reaches, making streamflow simulation a challenge in endorheic river watersheds. In this study, we modified the linear-reservoir groundwater module in SWAT(Soil and Water Assessment Tools, a widely used hydrological model) with a new nonlinear relationship to better represent groundwater processes; we then applied the original SWAT and modified SWAT to the Heihe River Watershed, the second largest endorheic river watershed in Northwest China, to simulate streamflow. After calibrating both the original SWAT model and the modified SWAT model, we analyzed model performance during two periods: an irrigation period and a non-irrigation period. Our results show that the modified SWAT model with the nonlinear groundwater module performed significantly better during both the irrigation and non-irrigation periods. Moreover, after comparing different runoff components simulated by the two models, the results show that, after the implementation of the new nonlinear groundwater module in SWAT, proportions of runoff components changed-and the groundwater flow had significantly increased, dominating the discharge season. Therefore, SWAT coupled with the non-linear groundwater module represents the complex hydrological process in the study area more realistically. Moreover, the results for various runoff components simulated by the modified SWAT models can be used to describe the hydrological characteristics of lowland areas. This indicates that the modified SWAT model is applicable to simulate complex hydrological process of arid endorheic rivers. 展开更多
关键词 soil and water Assessment tools swat GROUNDwater irrigation streamflow Heihe River
下载PDF
Application of SWAT99.2 to sensitivity analysis of water balance components in unique plots in a hilly region
9
作者 Jun-feng Dai Jia-zhou Chen +3 位作者 Guo-an Lu Larry C. Brown Lei Gan Qin-xue Xu 《Water Science and Engineering》 EI CAS CSCD 2017年第3期209-216,共8页
Although many sensitivity analyses using the soil and water assessment tool(SWAT) in a complex watershed have been conducted, little attention has been paid to the application potential of the model in unique plots. I... Although many sensitivity analyses using the soil and water assessment tool(SWAT) in a complex watershed have been conducted, little attention has been paid to the application potential of the model in unique plots. In addition, sensitivity analysis of percolation and evapotranspiration with SWAT has seldom been undertaken. In this study, SWAT99.2 was calibrated to simulate water balance components for unique plots in Southern China from 2000 to 2001, which included surface runoff, percolation, and evapotranspiration. Twenty-one parameters classified into four categories, including meteorological conditions, topographical characteristics, soil properties, and vegetation attributes, were used for sensitivity analysis through one-at-a-time(OAT) sampling to identify the factor that contributed most to the variance in water balance components. The results were shown to be different for different plots, with parameter sensitivity indices and ranks varying for different water balance components. Water balance components in the broad-leaved forest and natural grass plots were most sensitive to meteorological conditions, less sensitive to vegetation attributes and soil properties, and least sensitive to topographical characteristics. Compared to those in the natural grass plot, water balance components in the broad-leaved forest plot demonstrated higher sensitivity to the maximum stomatal conductance(GSI) and maximum leaf area index(BLAI). 展开更多
关键词 Forest and GRASS PLOTS water balance Sensitivity analysis soil and water assessment tool (swat) One-at-a-time (OAT) method
下载PDF
Effects of Land-Cover Changes and Other Remediations on Hydrology of Xinjiang River Sub-Watershed
10
作者 Ambika Khadka Chun Fu +2 位作者 Maungmoe Myint Chadwick Oliver James Saiers 《Journal of Environmental Science and Engineering(B)》 2013年第7期416-425,共10页
To determine whether reforestation efforts in the denuded hills have significant impacts on hydrology in the Xinjiang River watershed, the authors examined eight land-cover scenarios to compare hydrologic responses an... To determine whether reforestation efforts in the denuded hills have significant impacts on hydrology in the Xinjiang River watershed, the authors examined eight land-cover scenarios to compare hydrologic responses and to provide a conceptual basis for restoration practices. The authors analyzed a 17-year time period using remote sensing to develop land-cover classification for the watershed. Climate, soil and terrain data for the watershed were used as input in the SWAT (soil and water analysis tool) to quantify and compare the impacts on hydrologic processes. The model was calibrated to a two-year record of stream discharge measurements. The results show significant increase in forest-cover on hills (13%). However, the hydrological response is not very significant considering the changes in forest-cover, the surface runoff and percolation ratios only changed by 2% and 1% over time. Installment of earthen irrigation ponds in the outlets of sub-basin with maximum runoff had provided the most significant hydrologic improvements and could provide irrigation water to increase crop yield on remaining cropland. The study will provide information to the local government to aid decision-making in sustainable reforestation programs resulting in better hydrologic functioning for sustainable water resource management. 展开更多
关键词 swat soil and water analysis tool hydrologic responses surface runoff PERCOLATION reforestation efforts.
下载PDF
Defining Soil and Water Assessment Tool(SWAT)hydrologic responseunits(HRUs)by field boundaries 被引量:2
11
作者 Margaret M.Kalcic Indrajeet Chaubey Jane Frankenberger 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2015年第3期69-80,共12页
The Soil and Water Assessment Tool(SWAT)is widely used to relate farm management practices to their impacts on surface waters at the watershed scale,yet its smallest spatial unit is not generally defined by physically... The Soil and Water Assessment Tool(SWAT)is widely used to relate farm management practices to their impacts on surface waters at the watershed scale,yet its smallest spatial unit is not generally defined by physically meaningful boundaries.The hydrologic response unit(HRU)is the smallest spatial unit of the model,and the standard HRU definition approach lumps all similar land uses,soils,and slopes within a subbasin based upon user-defined thresholds.This standard method provides an efficient way to discretize large watersheds where simulation at the field scale may not be computationally feasible.In relatively smaller watersheds,however,defining HRUs to specific spatial locations bounded by property lines or field borders would often be advantageous,yet this is not currently possible within the ArcSWAT interface.In this study,a simple approach is demonstrated that defines HRUs by field boundaries through addition of uniquely named soils to the SWAT user soil database and creation of a field boundary layer with majority land use and soil attributes.Predictions of nitrogen,phosphorus,and sediment losses were compared in a case study watershed where SWAT was set up using both the standard HRU definition and field boundary approach.Watershed-scale results were reasonable and similar for both methods,but aggregating fields by majority soil type masked extremely high soil erosion predicted for a few soils.Results from field-based HRU delineation may be quite different from the standard approach due to choosing a majority soil type in each farm field.This approach is flexible such that any land use and soil data prepared for SWAT can be used and any shapefile boundary can divide HRUs. 展开更多
关键词 watershed modeling soil and water Assessment tool(swat) hydrologic response units field boundaries common land units landuse management
原文传递
SWAT模型融雪模块的改进 被引量:20
12
作者 余文君 南卓铜 +1 位作者 赵彦博 李硕 《生态学报》 CAS CSCD 北大核心 2013年第21期6992-7001,共10页
水土评价工具模型(SWAT)是一个具有物理基础的分布式水文模型,利用SCS径流曲线数方法计算地表径流,而采用相对简单的度日因子方法计算融雪径流。因此在湿润半湿润、雨量丰富的平原地区应用SWAT模型进行径流模拟时可以得到较好的模拟结果... 水土评价工具模型(SWAT)是一个具有物理基础的分布式水文模型,利用SCS径流曲线数方法计算地表径流,而采用相对简单的度日因子方法计算融雪径流。因此在湿润半湿润、雨量丰富的平原地区应用SWAT模型进行径流模拟时可以得到较好的模拟结果,但是在干旱半干旱、降水稀少,且春汛期间融雪径流是重要补给来源的高寒山区,模拟的融雪径流明显偏小,不能很好的反映这些地区的融雪过程,导致河道径流模拟精度偏低。FASST模型是具有物理机制的陆面过程模型,其采用能量平衡的方法计算融雪径流,能够较好的模拟复杂地形山区流域的融雪径流。以黑河山区流域为研究区,将FASST模型集成到SWAT模型,改善SWAT模型融雪径流的计算方法。通过对比SWAT模型集成前后莺落峡出山口的河道月径流、融雪径流和地表径流对河道的贡献等几个方面,表明了集成FASST融雪模块的SWAT模型能更好的反映黑河山区流域的融雪径流过程,从而提高河道径流的整体模拟精度。 展开更多
关键词 swat FASST 模型集成 融雪径流 黑河流域
下载PDF
SWAT模型在国内外非点源污染研究中的应用进展 被引量:22
13
作者 张蕾 卢文喜 +2 位作者 安永磊 伊燕平 李迪 《生态环境学报》 CSCD 北大核心 2009年第6期2387-2392,共6页
模型模拟是定量估算非点源污染负荷的有效工具,也是对其进行规划、控制和管理的前提。近年来SWAT模型在国内外得到了快速的发展和应用,是目前全球评价大范围和环境变化条件下非点源污染问题的一个有效工具。简介SWAT模型的发展历程及原... 模型模拟是定量估算非点源污染负荷的有效工具,也是对其进行规划、控制和管理的前提。近年来SWAT模型在国内外得到了快速的发展和应用,是目前全球评价大范围和环境变化条件下非点源污染问题的一个有效工具。简介SWAT模型的发展历程及原理,概述了SWAT模型目前在国内外的水文评价、污染物流失模拟、输入参数、土地利用及气候变化对水文响应的影响等方面的研究现状,并对SWAT模型的发展方向提出了建议,为模型的进一步完善与应用提供参考。结果显示,SWAT模型对水文评价(如径流量、泥沙量)可得到较好的模拟和预测结果,能够模拟污染物(如农药和化肥)在农田和河网中的迁移过程,模拟与分析土地利用/覆被变化及气候变化对水文过程的影响。模型参数的确定及其对地下水流与溶质运移的模拟是模型的主要问题,需要进一步研究与完善。 展开更多
关键词 水土评价模型(swat) 非点源污染 应用进展
下载PDF
SWAT模型在三峡库区流域非点源污染模拟的适用性研究 被引量:22
14
作者 陈媛 郭秀锐 +4 位作者 程水源 王征 秦翠红 陆瑾 高继军 《安全与环境学报》 CAS CSCD 北大核心 2012年第2期146-152,共7页
将SWAT(Soil and Water Assessment Tool)模型应用于库区大尺度流域的污染模拟研究,对其进行适用性评价及模拟应用分析。模型校验采用的是2002—2008年的水文月数据及水质水期数据,径流模拟效果最好,评价指标ENS(Nash-Suttclife Effi... 将SWAT(Soil and Water Assessment Tool)模型应用于库区大尺度流域的污染模拟研究,对其进行适用性评价及模拟应用分析。模型校验采用的是2002—2008年的水文月数据及水质水期数据,径流模拟效果最好,评价指标ENS(Nash-Suttclife Efficiency)均在0.9以上;泥沙模拟评价指标ENS在0.46~0.9;营养盐模拟评价指标ENS个别出现了〈0.36的情况,但总体模拟效果满足要求。应用SWAT模型对库区降水与地表产流、产沙、营养盐负荷进行了研究。结果表明:库区地表产流与降水的相关性趋势最好;地表产沙与产流、降水的总体趋势一致,但偶尔出现4、5月份地表产沙先于产流出现峰值的情况,这可能是由于春耕对地表扰动后又逢较强降水引起的水土流失;营养盐污染负荷尤其是TP的峰值趋势与地表产流相比,更接近地表产沙趋势。本文还对库区不同土地利用类型的污染负荷做了分析,得到各类土地利用类型的年均污染负荷总量排序及单位面积污染负荷,再次验证了SWAT模型在三峡库区流域的适用性。根据分析结果,库区耕地为非点源污染产出的主要源头,可将耕地耕种措施转变及土地利用类型转换作为库区非点源污染削减的重要手段。 展开更多
关键词 环境工程学 三峡库区 swat 非点源污染 适用性
下载PDF
基于SWAT模型的汉江流域径流模拟 被引量:21
15
作者 夏智宏 周月华 许红梅 《气象》 CSCD 北大核心 2009年第9期59-67,132,共10页
应用SWAT(Soil and Water Assessment Tool)分布式水文模型对汉江流域1971—2000年30年逐月径流进行了模拟。结果表明:模型模拟精度高于评价标准(模拟效率Ens>0.5,相关系数r2>0.6),SWAT模型适用于汉江流域的径流模拟;水量平衡各... 应用SWAT(Soil and Water Assessment Tool)分布式水文模型对汉江流域1971—2000年30年逐月径流进行了模拟。结果表明:模型模拟精度高于评价标准(模拟效率Ens>0.5,相关系数r2>0.6),SWAT模型适用于汉江流域的径流模拟;水量平衡各要素中,30年月、年平均蒸散发量、地表径流量、土壤对地下水补给量、土壤含水变化量、地下水侧流量分别占降水量的55.97%、25.88%、17.64%、0.26%、0.25%,蒸散发是该流域水量的主要输出项;各月30年平均降水量变化趋势与地表径流量变化趋势较一致,而与基流量变化趋势一致性较差;30年流域降水量年变化趋势与地表径流量、基流量的变化趋势较一致;30年月、年地表径流量对降水的响应程度高于基流。 展开更多
关键词 swat模型 汉江流域 径流模拟
下载PDF
SWAT模型辅助下的生态恢复水文响应--以陇西黄土高原华家岭南河流域为例 被引量:30
16
作者 宋艳华 马金辉 《生态学报》 CAS CSCD 北大核心 2008年第2期636-644,共9页
生态环境问题受到了日益广泛的关注,生态恢复也在各地蓬勃开展,但生态恢复工程的开展迫切需要相关理论研究的指导。采用假定生态恢复情景的方法,在遥感和地理信息系统的支持下,利用分布式水文模型SWAT(Soil and Water Assessment Tool)... 生态环境问题受到了日益广泛的关注,生态恢复也在各地蓬勃开展,但生态恢复工程的开展迫切需要相关理论研究的指导。采用假定生态恢复情景的方法,在遥感和地理信息系统的支持下,利用分布式水文模型SWAT(Soil and Water Assessment Tool)对陇西黄土高原的典型流域——华家岭南河流域进行了多种生态恢复情景模型的设计,并模拟了不同生态恢复情景下径流和蒸散发的响应情况。得出:在南河流域草地比森林植被涵养水源的作用更强,模拟年均径流深比林地低9.1%,而蒸散发却高2.2%,所以南河流域生态恢复过程中种草是十分必要的。结果同时表明,应用SWAT模型进行流域尺度的生态恢复水文响应研究是可行高效的。 展开更多
关键词 swat模型 生态恢复 水文响应 陇西黄土高原 GIS 径流模拟
下载PDF
新安江上游流域SWAT模型的构建及适用性评价 被引量:10
17
作者 李泽利 吕志峰 +2 位作者 赵越 王玉秋 张震 《水资源与水工程学报》 2015年第1期25-31,共7页
以新安江上游屯溪流域为研究区域,建立了SWAT模型的气象、土壤、土地利用和农作物管理等数据库,并利用2000-2010年逐月实测的径流、泥沙及非点源溶解态氮负荷数据进行了多参数、多站点的率定和验证,使用多目标(纳氏系数、线性相关系数... 以新安江上游屯溪流域为研究区域,建立了SWAT模型的气象、土壤、土地利用和农作物管理等数据库,并利用2000-2010年逐月实测的径流、泥沙及非点源溶解态氮负荷数据进行了多参数、多站点的率定和验证,使用多目标(纳氏系数、线性相关系数和相对误差)对模型适用性进行了评价。结果表明:径流模拟效果非常好,泥沙和营养盐模拟结果令人满意,SWAT模型在屯溪流域适用性较好,可以模拟分析该地区的非点源污染问题,研究所构建的数据库和率定的参数可为进一步研究新安江流域的水环境管理提供科学依据和决策支持。 展开更多
关键词 径流 泥沙 营养盐 swat模型 非点源污染 适用性 新安江
下载PDF
基于SWAT模型新开发梯田模块的中国南方红壤区梯田水沙及养分流失模拟 被引量:6
18
作者 邵辉 高建恩 +2 位作者 Claire Baffaut 王克勤 樊恒辉 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2014年第5期147-156,共10页
【目的】采用SWAT模型新开发梯田模块对中国南方红壤区梯田的水沙和养分流失进行模拟,分析SWAT模型梯田模块在中国南方水土流失地区的适用性。【方法】采用SWAT模型中新开发的梯田模块,结合其全球应用验证,在初步对美国软埝验证的基础上... 【目的】采用SWAT模型新开发梯田模块对中国南方红壤区梯田的水沙和养分流失进行模拟,分析SWAT模型梯田模块在中国南方水土流失地区的适用性。【方法】采用SWAT模型中新开发的梯田模块,结合其全球应用验证,在初步对美国软埝验证的基础上,利用资料较全的位于中国南方红壤区的云南尖山河小流域2007-2008年典型径流小区降雨径流、侵蚀产沙和总氮实测资料,对隔坡梯田水沙及面源污染调控过程进行模拟与验证。【结果】SWAT模型梯田模块对红壤区径流、侵蚀产沙及总氮的模拟结果能满足模型精度要求。利用梯田模块对红壤区隔坡梯田结构进行的优化表明,在坡度小于18.58°,梯田单元坡长小于20m的坡地上修建平坡比大于1∶5的单阶地隔坡梯田,可满足容许土壤流失量的要求。【结论】基于SWAT模型开发的梯田模块能够反映中国南方红壤区梯田降雨径流泥沙养分的运移过程,为研究水土保持措施对流域水循环影响提供了新的技术支撑。 展开更多
关键词 swat模型 水沙运移 养分流失 红壤区 隔坡样田 中国南方
下载PDF
基于SWAT模型的黄土高原典型区水土流失格局模拟评价 被引量:9
19
作者 卢爱刚 索安宁 张镭 《水土保持研究》 CSCD 北大核心 2011年第2期57-61,65,共6页
运用分布式生态水文模型SWAT对黄土高原典型区汭河流域的本底径流深度、本底侵蚀模数、现状径流深度、现状侵蚀模数分别进行了模拟研究,并以本底径流深度和本底侵蚀深度为标准分别对流域的现状径流和现状侵蚀进行定量空间评价。研究结... 运用分布式生态水文模型SWAT对黄土高原典型区汭河流域的本底径流深度、本底侵蚀模数、现状径流深度、现状侵蚀模数分别进行了模拟研究,并以本底径流深度和本底侵蚀深度为标准分别对流域的现状径流和现状侵蚀进行定量空间评价。研究结果表明:(1)SWAT模型能够准确地模拟汭河流域水土流失总量及其空间格局。(2)汭河流域上游的多数集水区本底径流深度为70mm,占流域面积的68.68%,流域中下游集水区本底径流深度多数为60mm,占流域面积的28.96%。流域土壤侵蚀模数普遍在8t/hm2以下,只有极少数集水区的侵蚀模数在8~20t/hm2之间。(3)随着土地覆被盖度的增高,流域径流量减小,输沙量也减小,蒸发量增加,径流深度和侵蚀模数的空间异质性变小,水土流失的风险降低。(4)土壤侵蚀模数的空间异质性比径流深度的空间异质性对土地覆被变化更为敏感,5种土地覆被情景中,土壤侵蚀模数的空间异质性的大小顺序是:耕地、低覆盖度草地>裸地、沙化土地>当前土地覆被>疏林、草地>林地。 展开更多
关键词 水土流失 空间格局 swat模型 土地覆被 汭河流域
下载PDF
SWAT模型及其应用与改进的研究进展 被引量:12
20
作者 金婧靓 王飞儿 《东北林业大学学报》 CAS CSCD 北大核心 2010年第12期111-114,共4页
介绍了SWAT模型的基本原理,归纳了模型运行需要准备的各类参数。在广泛调研国内外相关文献的基础上,阐述了目前模型应用的主要领域和最新进展,并进一步对模型的改进研究做了分析。
关键词 swat 非点源污染 分布式模型 应用 改进
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部