Modelling the hydrological balance in semi-arid zones is essential for effective water resource management,encompassing both surface water and groundwater.This study aims to model the monthly hydrological water cycle ...Modelling the hydrological balance in semi-arid zones is essential for effective water resource management,encompassing both surface water and groundwater.This study aims to model the monthly hydrological water cycle in the Wadi Mina upstream watershed(northwest Algeria)by applying the Soil and Water Assessment Tool(SWAT)hydrological model.SWAT modelling integrates spatial data such as the Digital Elevation Model(DEM),land use,soil types and various meteorological parameters including precipitation,maximum and minimum temperatures,relative humidity,solar radiation and wind speed.The SWAT model was calibrated and validated using data from January 2012 to December 2014,with a calibra-tion period from January 2012 to August 2013 and a validation period from September 2013 to December 2014.Sensitivity and parameter calibration were conducted using the SWAT-SA program,and model performance evaluation relied on comparing the observed discharge at the outlet of the basin with model-simulated discharge,assessed through statistical coefficients including Nash-Sutcliffe Efficiency(NSE),coefficient of determination(R2)and Percent Bias(PBAIS).Calibration results indicated favourable objec-tive function values(NSE=0.79,R2=0.93,PBAIS=-8.53%),although a slight decrease was observed during validation(NSE=0.69,R2=0.86,and PBAIS=-11.41%).The application of the SWAT model to the Wadi Mina upstream watershed highlighted its utility in simulating the spatial distribution of different components of the hydrological balance in this basin.The SWAT model revealed that approximately 71%of the precipitation in the basin evaporates,while only 29%contributes to surface runoff or infiltration into the soil.展开更多
Land use/cover change(LUCC)plays a key role in altering surface hydrology and water balance,finally affect-ing the security and availability of water resources.However,mechanisms underlying LUCC determination of water...Land use/cover change(LUCC)plays a key role in altering surface hydrology and water balance,finally affect-ing the security and availability of water resources.However,mechanisms underlying LUCC determination of water-balance processes at the basin scale remain unclear.In this study,the Soil and Water Assessment Tool(SWAT)model and partial least squares regression were used to detect the effects of LUCC on hydrology and water components in the Zuli River Basin(ZRB),a typical watershed of the Yellow River Basin.In general,three recommended coefficients(R^(2)and E ns greater than 0.5,and P bias less than 20%)indicated that the output results of the SWAT model were reliable and that the model was effective for the ZRB.Then,several key findings were obtained.First,LUCC in the ZRB was characterized by a significant increase in forest(21.61%)and settlement(23.52%)and a slight reduction in cropland(-1.35%),resulting in a 4.93%increase in evapotranspiration and a clear decline in surface runoffand water yield by 15.68%and 2.95%at the whole basin scale,respectively.Second,at the sub-basin scale,surface runoffand water yield increased by 14.26%-36.15%and 5.13%-15.55%,respectively,mainly due to settlement increases.Last,partial least squares regression indicated that urbanization was the most significant contributor to runoffchange,and evapotranspiration change was mainly driven by forest expansion.These conclusions are significant for understanding the relationship between LUCC and water balance,which can provide meaningful information for managing water resources and the long-term sustainability of such watersheds.展开更多
The limited availability of high-quality spatial data often limits the development of hydrological modelling in developing countries. Hydrological models with data at different scales may generate large uncertainties ...The limited availability of high-quality spatial data often limits the development of hydrological modelling in developing countries. Hydrological models with data at different scales may generate large uncertainties in modelling outputs. This study analysed the accuracy of four SWAT built models that combine soil and land use/land cover (LULC) data at the scale of 1:250,000 and 1:100,000 in a basin of Mexico. SWAT model allowed determining that large-scale maps produced better results than data from small-scale. Sensitivity analysis with different soil data was less than LULC data. However, the small-scale can be used for exploratory purposes when testing SWAT performance.展开更多
In the Huanghe (Yellow) River basin,soil erosion is a serious problem,while runoff and sediment yield simulation has not been extensively studied on the basis of GIS (Geographic Information System) and distributed hyd...In the Huanghe (Yellow) River basin,soil erosion is a serious problem,while runoff and sediment yield simulation has not been extensively studied on the basis of GIS (Geographic Information System) and distributed hydrological model. GIS-based SWAT (Soil and Water Assessment Tool) model was used to simulate runoff and sediment in the Huanghe River basin. The objective of this paper is to examine the applicability of SWAT model in a large river basin with high sediment runoff modulus,which could reach 770t/(km2·a). A two-stage "Brute Force" optimization procedure was used to calibrate the parameters with the observed monthly flow and sediment data from 1992 to 1997,and with input parameters set during the calibration process without any change the model was validated with 1998-1999’s observed data. Coefficient of examination (R2) and Nash-Suttcliffe simulation efficiency (Ens) were used to evaluate model prediction. The evaluation coefficients for simulated flow and sediment,and observed flow and sediment were all above 0.7,which shows that SWAT model could be a useful tool for water resources and soil conservation planning in the Huanghe River basin.展开更多
Increasing water demands,especially in arid and semi-arid regions,continuously exacerbate groundwater as the only reliable water resources in these regions.Samalqan watershed,Iran,is a groundwater-based irrigation wat...Increasing water demands,especially in arid and semi-arid regions,continuously exacerbate groundwater as the only reliable water resources in these regions.Samalqan watershed,Iran,is a groundwater-based irrigation watershed,so that increased aquifer extraction,has caused serious groundwater depletion.So that the catchment consists of surface water,the management of these resources is essential in order to increase the groundwater recharge.Due to the existence of rivers,the low thickness of the alluvial sediments,groundwater level fluctuations and high uncertainty in the calculation of hydrodynamic coefficients in the watershed,the SWAT and MODFLOW models were used to assess the impact of irrigation return flow on groundwater recharge and the hydrological components of the basin.For this purpose,the irrigation operation tool in the SWAT model was utilized to determine the fixed amounts and time of irrigation for each HRU(Hydrological Response Unit)on the specified day.Since the study area has pressing challenges related to water deficit and sparsely gauged,therefore,this investigation looks actual for regional scale analysis.Model evaluation criteria,RMSE and NRMSE for the simulated groundwater level were 1.8 m and 1.1%respectively.Also,the simulation of surface water flow at the basin outlet,provided satisfactory prediction(R^(2)=0.92,NSE=0.85).Results showed that,the irrigation has affected the surface and groundwater interactions in the watershed,where agriculture heavily depends on irrigation.Annually 11.64 Mm3 water entered to the aquifer by surface recharge(precipitation,irrigation),transmission loss from river and recharge wells 5.8 Mm3 and ground water boundary flow(annually 20.5 Mm^(3)).Water output in the watershed included ground water extraction and groundwater return flow(annually 46.4 Mm^(3))and ground water boundary flow(annually 0.68 Mm^(3)).Overally,the groundwater storage has decreased by 9.14 Mm3 annually in Samalqan aquifer.This method can be applied to simulate the effects of surface water fluxes to groundwater recharge and river-aquifer interaction for areas with stressed aquifers where interaction between surface and groundwater cannot be easily assessed.展开更多
The application of the Soil and Water Assessment Tool (SWAT) to the Olifants Basin in South Africa was the focus of our study with emphasis on calibration, validation and uncertainty analysis. The Basin was discretize...The application of the Soil and Water Assessment Tool (SWAT) to the Olifants Basin in South Africa was the focus of our study with emphasis on calibration, validation and uncertainty analysis. The Basin was discretized into 23 sub-basins and 226 Hydrologic Response Units (HRUs) using 3 arc second (90 m × 90 m) pixel resolution SRTM DEM with stream gauge B7H015 as the Basin outlet. Observed stream flow data at B7H015 were used for model calibration (1988-2001) and validation (2002-2013) using the split sample approach. Relative global sensitivity analysis using SUFI-2 algorithm was used to determine sensitive parameters to stream flow for calibration of the model. Performance efficiency of the Olifants SWAT model was assessed using Nash-Sutcliffe (NSE), coefficient of determination (R<sup>2</sup>), Percent Bias (PBIAS) and Root Mean Square Error-Observation Standard deviation Ratio (RSR). Sensitivity analysis revealed in decreasing order of significance, runoff curve number (CN2), alpha bank factor (ALPHA_BNK), soil evaporation compensation factor (ESCO), soil available water capacity (SOIL_AWC, mm H<sub>2</sub>O/mm soil), groundwater delay (GW_ DELAY, days) and groundwater “revap” coefficient (GW_REVAP) to be the most sensitive parameters to stream flow. Analysis of the model during the calibration period gave the following statistics;NSE = 0.88;R<sup>2</sup> = 0.89;PBIAS = -11.49%;RSR = 0.34. On the other hand, statistics during the validation period were NSE = 0.67;R<sup>2 </sup>= 0.79;PBIAS = -20.69%;RSR = 0.57. The observed statistics indicate the applicability of the SWAT model in simulating the hydrology of the Olifants Basin and therefore can be used as a Decision Support Tool (DST) by water managers and other relevant decisions making bodies to influence policy directions on the management of watershed processes especially water resources.展开更多
[ Objective] The research aimed to establish SWAT distributed hydrologic model and analyze influence of the climatic change on runoff in Beijiang River basin. [ Method] Beijiang River basin as research object, SWAT mo...[ Objective] The research aimed to establish SWAT distributed hydrologic model and analyze influence of the climatic change on runoff in Beijiang River basin. [ Method] Beijiang River basin as research object, SWAT model was used to simulate runoff in basin. Monthly water flow in Shijiao station from 1961 to 1980 was used to determine model parameter, while monthly water flow from 1981 to 1990 was used to verify. Setting 15 kinds of climate change scenarios, SWAT model was used to simulate influence of the future climatic change on runoff in Beijiang River basin. [Result] Simulated accuracy of the SWAT model was high, and it could be used to simulate runoff in Beijiang River basin. Under the situation of in- variable rainfall, temperature rise made that evaporation capacity increased, and runoff depth decreased. When temperature unchanged, rainfall increase made that evaporation capacity and runoff depth increased somewhat. [ Conclusion] The research could provide reference basis for water re- source management in Beijiang River basin.展开更多
[Objective]The study aimed to simulate the production and transportation process of surface runoff,sediment and non-point source pollution in Xincai River basin based on SWAT model.[Method]On the basis of analyzing th...[Objective]The study aimed to simulate the production and transportation process of surface runoff,sediment and non-point source pollution in Xincai River basin based on SWAT model.[Method]On the basis of analyzing the principles of SWAT model,the correlative parameters of runoff,sediment and water quality were calibrated,then the spatial and temporal distribution of runoff,sediment and non-point source pollutants in Xincai River basin were studied by using SWAT model.[Result]The results of calibration and validation showed that SWAT model was reasonable and available,and it can be used to simulate the non-point source pollution of Xincai River basin.The simulation results revealed that the load of sediment and various pollutants was the highest in the rainy year,followed by the normal year,while it was the minimum in the dry year,indicating that the production of sediment and non-point source pollutants was closely related to annual runoff.[Conclusion]The research could provide scientific references for the prevention of non-point source pollution in a basin.展开更多
[Objective] The study aimed to simulate the runoff of Shitoukoumen Reservoir basin by using SWAT model. [Method] Based on DEM elevation, land use type, soil type and hydrometeorological data, SWAT model, a distributed...[Objective] The study aimed to simulate the runoff of Shitoukoumen Reservoir basin by using SWAT model. [Method] Based on DEM elevation, land use type, soil type and hydrometeorological data, SWAT model, a distributed hydrological model was established to simulate the monthly runoff of Shitoukoumen Reservoir basin, and the years 2006 and 2010 were chosen as the calibration and validation period respectively. [Result] The simulation results indicated that SWAT model could be used to simulate the runoff of Shitoukoumen Reservoir basin, and the simulation effect was good. However, the response of the model to local rainstorm was not obvious, so that the actual runoff in June and July of 2010 was abnormally higher than the simulation value. [Conclusion] The research could provide theoretical references for the plan and management of water resources in Shitoukoumen Reservoir basin in future.展开更多
The purpose of this paper was to implement "Soil and Water Assessment Tool (SWAT)" model and Geographic Information System (GIS) to evaluate the impact of land use changes on stream discharge in Nghinh Tuong wat...The purpose of this paper was to implement "Soil and Water Assessment Tool (SWAT)" model and Geographic Information System (GIS) to evaluate the impact of land use changes on stream discharge in Nghinh Tuong watershed (a brand of Cau River) in Northern Vietnam. The watershed was coverd by 56% forestry land, 30% agricultural land and the remain 14% for others. Stream discharge observed data from 2002 to 2007 were used for calibration period and from 2008 to 2012 for validation period. The result showed that two coefficients (NSE and PBIAS) to evaluate model performance were 0.76 and 6.54% for calibration period and 0.87 and 4.74% for validation period, respectively. Stream discharge strongly depends not only on quantity of precipitation but also on land use change. Through the scenario 1, agricultural land (corn, orchard and tea) increases 9,782.67 ha (2.45%), meanwhile forest (forest-mixed) decreases 1,091.77 ha (2.75%) as compared to baseline scenario. Additionally, precipitation increases 3.74% in mean wet season, but decreases 0.5% in mean dry season with respect to baseline period. SWAT model was able to simulate stream discharge and sediment yield for Nghinh Tuong watershed successfully not only for baseline scenario but also for scenario 1. In brief, SWAT proves its ability in simulation stream discharge in subwatershed level. It is a useful tool to assist water quantity and quality management process in Nghinh Tuong watershed. This work one more time indicated that SWAT is useful tool for resources and environment management.展开更多
Flash floods are a natural disaster that occurs annually, especially in the mountainous terrain and steep slopes of northern Thailand. The current flood forecasting systems and tools are available but have low accurac...Flash floods are a natural disaster that occurs annually, especially in the mountainous terrain and steep slopes of northern Thailand. The current flood forecasting systems and tools are available but have low accuracy and efficiency. The numbers of rainfall and runoff stations are less, because the access to the station area is difficult. Additionally, the operation and maintenance costs are high. Hydrological modeling of a SWAT (Soil and Water Assessment Tool) was used in this study with the application of three days weather forecast from the NWP (numerical weather prediction), which provided temperature, relative humidity, rainfall, sunshine and wind speed. The data from NWP and SWAT were used to simulate the runoff from the Nan River in the last 10 years (2000-2010). It was found that the simulated flow rate for the main streams using data from NWP were higher than the observations. At the N64 and Nl stations, the ratios of the maximum simulated flow rate to the observations were equal to 108% and 118%, respectively. However, for the tributaries, it was found that the simulated flow rate using NWP data was lower than the observations, but, it was still within the acceptable range of not greater than 20%,6. At N65, D090201 and D090203 stations, the ratio of the maximum simulated flow rate were 90.0%, 83.0% and 86.0%, respectively. This was due to the rainfall from the NWP model being greater than the measured rainfall. The NWP rainfall was distributed all over the area while the rainfall data from the measurements were obtained from specific points. Therefore, the rain from the NWP model is very useful especially for the watershed areas without rain gauge stations. In summary, the data from the NWP can be used with the SWAT model and provides relatively sound results despite the value for the main river being slightly higher than the observed data. Consequently, the output can be used to create a flood map for flash flood warning in the area.展开更多
The main objective of this study is to understand the runoff, sediment yield and water quality of the Upper Indus River Basin of Pakistan. To achieve this goal, specific objectives have been met which include, setup o...The main objective of this study is to understand the runoff, sediment yield and water quality of the Upper Indus River Basin of Pakistan. To achieve this goal, specific objectives have been met which include, setup of a hydrological model using Soil and Water Assessment Tool (SWAT) then calibration and validation of the hydrological model using river discharges and in the end investigating the performance of the hydrological model by SWAT. This research will have great impacts on socio-economic conditions of Pakistan because study of upper Indus River basin is imperative to provide data needed for its management, and to warrant that it is sustainable to support the increasing population and conservational flows. A set of programmable mapping components MapWindow Geographic Information System (GIS) was used which is an open source GIS based mapping application. It is SWAT used spatially distributed information on elevation, land use, slope and soil. The program Sequential Uncertainty Fitting ver.2 (SUFI-2) in a combination of uncertainty analysis and calibration of outputs was used in SWAT-CUP. SWAT model used input data, which have climate information to obtain results. The observed climate data of temperature gauges and rain gauge were used as input in the SWAT model;the calibration results for three discharge stations were produced. The initial P-factor value was satisfactory but more iteration to attempt narrow uncertainty band with improving goal function, resulted in small percentage of observed data within uncertainty band. A warm up period of three years (1979-1982) was used for simulation of SWAT model. The model was calibrated for selected three catchments for the period 1982-2000 and validated for period 2001-2010. Results are quite comparable with the observed flows.展开更多
In the field of the water resources, hydrologic models have been used to assess water quality performance of complex watersheds and river basins. Hydrologic models can provide essential information for making decision...In the field of the water resources, hydrologic models have been used to assess water quality performance of complex watersheds and river basins. Hydrologic models can provide essential information for making decisions on sustainable management system of water resources within watersheds. The main objective of this study was to validate the performance of the Soil and Water Assessment Tool (SWAT) and the feasibility of using this model as a simulator of runoff at a catchment scale in semi-arid area in Northwestern Tunisia. Calibration and validation of the model output were performed by comparing predicted runoff with corresponding measurements from the Sarrath outlet for the periods 1990-1995 for calibration and 2000-2005 for validation. The time series for the years 1996-1999 showed discrepancies between the measured rainfall and the observed runoff indicating errors due to either the observations or to a dysfunction in the equipments. Sensitivity analysis shows that sensitive parameters for the simulation of discharge include curve number, soil evaporation compensation factor, depth of water in shallow aquifer and slope of subbasin. Statistical comparisons between monthly simulated results and observed data for the calibration period gave a reasonable agreement with a coefficient of determination (R2) greater than 0.75 and Nash-Sutcliffe Coefficient (NSE) equal to 0.72. These values were respectively 0.70 and 0.64 for validation period. Overall, the SWAT model has the capability to predict runoff within a complex semi-arid catchment.展开更多
Estimation of runoff volume and sediment load is the main problem that affects the performance of dams due to the reduction in the storage capacity of their reservoirs and their effect on dam efficiency and operation ...Estimation of runoff volume and sediment load is the main problem that affects the performance of dams due to the reduction in the storage capacity of their reservoirs and their effect on dam efficiency and operation schedule. The simulation models can be considered for this purpose if the continuous field measurements are not available. Soil and Water Assessment Tool (SWAT) and Water Erosion Prediction Project (WEPP) models were applied to estimate the annual runoff volume and sediment load for Duhok Dam Reservoir in north of Duhok/Iraq for the period 1988-2011. The estimated annual runoff volume varied from 2.3 to 34.7 MCM for considered period. Those values were affected by rainfall depth, intensity and runoff coefficient. The resultant annual runoff coefficient for the studied area ranged from 0.05 to 0.35 (average was 0.18) causing an average runoff volume of about 14 MCM. The results of sediment routing indicated that the values of sediment yields varied from 50 to 1400 t/km2/year depending on sub basin properties. The average annual sediment load from the whole watershed is about 120 × 10<sup>3</sup> ton. The estimated total sediment arrived to Duhok Reservoir for the considered period 1988-2011 was about 2.9 × 10<sup>6</sup> ton. The results indicate that both models gave reasonable results in comparison with measured values. Based on statistical criteria, the results of both models are close to gather.展开更多
Kurdistan in northern Iraq, a semi-arid region, predominantly a pastureland, is nourished by Lesser Zab, which is the second major tributary of Tigris River. The discharge in the tributary, in recent times, has been e...Kurdistan in northern Iraq, a semi-arid region, predominantly a pastureland, is nourished by Lesser Zab, which is the second major tributary of Tigris River. The discharge in the tributary, in recent times, has been experiencing increasing variability contributing to more severe droughts and floods supposedly due to climate change. For a proper appreciation, SWAT model has been used to assess the impact of climate change on its hydrological components for a half-centennial lead time to 2046-2064 and a centennial lead time to 2080-2100. The suitability of the model was first evaluated, and then, outputs from six GCMs were incorporated to evaluate the impacts of climate change on water resources under three emission scenarios: A1B, A2 and B1. The results showed worsening water resources regime.展开更多
Abstract: Excess of organic matter and nutrients in water promotes eutrophication process observed in the Ardila River. It was classified as much polluted being critical for Alqueva-Pedrogāo System. The aim of this ...Abstract: Excess of organic matter and nutrients in water promotes eutrophication process observed in the Ardila River. It was classified as much polluted being critical for Alqueva-Pedrogāo System. The aim of this study was to estimate the transported nutrients loads in a transboundary watershed using the SWAT (soil and water assessment tool) model and to determine the contribution of nutrients load in the entire watershed. Ardila watershed is about 3,711 km^2 extended from Spain (78%) to the eastern part of Portugal (22%). It was discretized into 32 sub-basins using automated delineation routine, and 174 hydrologic response units. Monthly average meteorological data (from 1947 to 1998) were used to generate daily values through the weather generator Model incorporated in SWAT. Real daily precipitation (from 1931 to 2003) was introduced. The model was calibrated and verified for flow (from 1950 to 2000) and nutrients (from 1981 to 1999). Model performance was evaluated using statistical parameters, such as NSE (Nash-Sutcliffe efficiency) and root mean square error (R2). Calibration and verification flow results showed a satisfactory agreement between simulated and measured monthly date from 1962 to 1972 (NSE = 0.8; R^2 = 0.9). The results showed that the most important diffuse pollution comes from the two the main tributary (Spain). The estimated nitrogen and phosphorous loads contribution per year was respectively 72% and 59% in Spain and 28% and 41% in Portugal. The SWAT model was revealed to be a useful tool for an integrated water management approach that might be improved taking into count the WFD (water framework directive).展开更多
Worldwide,forests are vital in the regulation of the water cycle regulation and in water balance allocation.Knowledge of ecohydrological responses of production forests is essential to support management strategies,es...Worldwide,forests are vital in the regulation of the water cycle regulation and in water balance allocation.Knowledge of ecohydrological responses of production forests is essential to support management strategies,especially where water is already scarce.Shifting climatological patterns are expected to impact thermopluviometric regimes,water cycle components,hydrological responses,and plant physiology,evapotranspiration rates,crop productivity and land management operations.This work(1)assessed the impacts of different predicted climate conditions on water yield;(2)inferred the impacts of climate change on biomass production on eucalypt-to-eucalypt succes sion.To this end,the widely accepted Soil and Water Assessment Tool(SWAT)was run with the RCA,HIRHAM5 and RACMO climate models for two emission scenarios(RCP 4.5 and8.5).Three 12-year periods were considered to simulate tree growth under coppice regime.The results revealed an overall reduction in streamflow and water yield in the catchment in line with the projected reduction in total annual precipitation.Moreover,HIRHAM5 and RACMO models forecast a slight shift in seasonal streamflow of up to 2 months(for2024-2048)in line with the projected increase in precipitation from May to September.For biomass production,the extreme climate model(RCA)and severe emis sion scenario(RCP 8.5)predicted a decrease up to 46%.However,in the less extreme and more-correlated(with actual catchment climate conditions)climate models(RACMO and HIRHAM5)and in the less extreme emission scenario(RCP 4.5),biomass production increased(up to 20%),and the growth cycle was slightly reduced.SWAT was proven to be a valuable tool to assess climate change impacts on a eucalypt-dominated catchment and is a suitable decision-support tool for forest managers.展开更多
Climate change is the dominant factor affecting the hydrological process, it is of great significance to simulate and predict its influence on water resources management, socio-economic activities, and sustainable dev...Climate change is the dominant factor affecting the hydrological process, it is of great significance to simulate and predict its influence on water resources management, socio-economic activities, and sustainable development in the future. In this paper, the Xiying River Basin was taken as the study area, China Atmospheric Assimilation Driven Data Set(CMADS) and observation data from the Jiutiaoling station were used to simulate runoff of the SWAT model and calibrate and verify model parameters. On this basis, runoff change of the basin under the future climate scenario of CMIP6 was predicted. Our research shows that:(1) The contribution rates of climate change and human activities to runoff increase of the Xiying River are 89.17% and 10.83%, respectively. Climate change is the most important factor affecting runoff change of the Xiying River.(2) In these three different emission scenarios of SSP1-2.6, SSP2-4.5 and SSP5-8.5 in CMIP6 climate model, the average temperature increased by0.61, 1.09 and 1.74 C, respectively, in the Xiying River Basin from 2017 to 2050. Average precipitation increased by 14.36, 66.88, and 142.73 mm, respectively, and runoff increased by 15, 24, and 35 million m3, respectively.The effect of climate change on runoff will continue to deepen in the future.展开更多
With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication o...With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas). Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The Water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge' and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.展开更多
Changes in natural geographic features and landscape patterns directly influence the hydrology and non-point source pollution processes in the watershed;however,to slow down non-point source pollution,it is necessary ...Changes in natural geographic features and landscape patterns directly influence the hydrology and non-point source pollution processes in the watershed;however,to slow down non-point source pollution,it is necessary to distinguish their effects.But the non-point source pollution process is interactional as a result of multiple factors,and the collinearity between multiple independent variables limits our ability of reason diagnosis.Thus,taking the Burhatong River Basin,Northeast China as an example,the methods of hydrological simulation,geographic detectors,and redundancy analysis have been combined to determine the impact of natural geographic features and landscape patterns on non-point source pollution in the watershed.The Soil&Water Assessment Tool(SWAT)has been adopted to simulate the spatial and temporal distribution characteristics of total nitrogen and total phosphorus in the watershed.The results show that the proportions of agricultural land and forest area and the location-weighted landscape contrast index(LWLI)are the main indicators influencing the rivers total nitrogen and total phosphorus.The interaction of these indicators with natural geographic features and landscape configuration indicators also significantly influences the changes in total nitrogen(TN)and total phosphorus(TP).Natural geographical features and landscape patterns have different comprehensive effects on non-point source pollution in the dry and wet seasons.TN and TP loads are affected mainly by the change in landscape pattern,especially in the wet season.Although the ecological restoration program has improved forest coverage,the purification effect of increased forest coverage on the water quality in the watershed may be offset by the negative impact of increased forest fragmentation.The high concentration and complexity of farmland patches increase the risk of non-point source pollution spread to a certain extent.展开更多
文摘Modelling the hydrological balance in semi-arid zones is essential for effective water resource management,encompassing both surface water and groundwater.This study aims to model the monthly hydrological water cycle in the Wadi Mina upstream watershed(northwest Algeria)by applying the Soil and Water Assessment Tool(SWAT)hydrological model.SWAT modelling integrates spatial data such as the Digital Elevation Model(DEM),land use,soil types and various meteorological parameters including precipitation,maximum and minimum temperatures,relative humidity,solar radiation and wind speed.The SWAT model was calibrated and validated using data from January 2012 to December 2014,with a calibra-tion period from January 2012 to August 2013 and a validation period from September 2013 to December 2014.Sensitivity and parameter calibration were conducted using the SWAT-SA program,and model performance evaluation relied on comparing the observed discharge at the outlet of the basin with model-simulated discharge,assessed through statistical coefficients including Nash-Sutcliffe Efficiency(NSE),coefficient of determination(R2)and Percent Bias(PBAIS).Calibration results indicated favourable objec-tive function values(NSE=0.79,R2=0.93,PBAIS=-8.53%),although a slight decrease was observed during validation(NSE=0.69,R2=0.86,and PBAIS=-11.41%).The application of the SWAT model to the Wadi Mina upstream watershed highlighted its utility in simulating the spatial distribution of different components of the hydrological balance in this basin.The SWAT model revealed that approximately 71%of the precipitation in the basin evaporates,while only 29%contributes to surface runoff or infiltration into the soil.
基金This research was jointly supported by the National Natural Science Foundation of China(Grants No.U21A2011,41991233 and 41971129)the National Key Research and Development Program of China(Grant No.SQ2022YFF1300053)the Distinguished Membership Project of the Youth Innovation Promotion Association of Chinese Academy of Sci-ences(Grant No.Y201812).
文摘Land use/cover change(LUCC)plays a key role in altering surface hydrology and water balance,finally affect-ing the security and availability of water resources.However,mechanisms underlying LUCC determination of water-balance processes at the basin scale remain unclear.In this study,the Soil and Water Assessment Tool(SWAT)model and partial least squares regression were used to detect the effects of LUCC on hydrology and water components in the Zuli River Basin(ZRB),a typical watershed of the Yellow River Basin.In general,three recommended coefficients(R^(2)and E ns greater than 0.5,and P bias less than 20%)indicated that the output results of the SWAT model were reliable and that the model was effective for the ZRB.Then,several key findings were obtained.First,LUCC in the ZRB was characterized by a significant increase in forest(21.61%)and settlement(23.52%)and a slight reduction in cropland(-1.35%),resulting in a 4.93%increase in evapotranspiration and a clear decline in surface runoffand water yield by 15.68%and 2.95%at the whole basin scale,respectively.Second,at the sub-basin scale,surface runoffand water yield increased by 14.26%-36.15%and 5.13%-15.55%,respectively,mainly due to settlement increases.Last,partial least squares regression indicated that urbanization was the most significant contributor to runoffchange,and evapotranspiration change was mainly driven by forest expansion.These conclusions are significant for understanding the relationship between LUCC and water balance,which can provide meaningful information for managing water resources and the long-term sustainability of such watersheds.
文摘The limited availability of high-quality spatial data often limits the development of hydrological modelling in developing countries. Hydrological models with data at different scales may generate large uncertainties in modelling outputs. This study analysed the accuracy of four SWAT built models that combine soil and land use/land cover (LULC) data at the scale of 1:250,000 and 1:100,000 in a basin of Mexico. SWAT model allowed determining that large-scale maps produced better results than data from small-scale. Sensitivity analysis with different soil data was less than LULC data. However, the small-scale can be used for exploratory purposes when testing SWAT performance.
文摘In the Huanghe (Yellow) River basin,soil erosion is a serious problem,while runoff and sediment yield simulation has not been extensively studied on the basis of GIS (Geographic Information System) and distributed hydrological model. GIS-based SWAT (Soil and Water Assessment Tool) model was used to simulate runoff and sediment in the Huanghe River basin. The objective of this paper is to examine the applicability of SWAT model in a large river basin with high sediment runoff modulus,which could reach 770t/(km2·a). A two-stage "Brute Force" optimization procedure was used to calibrate the parameters with the observed monthly flow and sediment data from 1992 to 1997,and with input parameters set during the calibration process without any change the model was validated with 1998-1999’s observed data. Coefficient of examination (R2) and Nash-Suttcliffe simulation efficiency (Ens) were used to evaluate model prediction. The evaluation coefficients for simulated flow and sediment,and observed flow and sediment were all above 0.7,which shows that SWAT model could be a useful tool for water resources and soil conservation planning in the Huanghe River basin.
文摘Increasing water demands,especially in arid and semi-arid regions,continuously exacerbate groundwater as the only reliable water resources in these regions.Samalqan watershed,Iran,is a groundwater-based irrigation watershed,so that increased aquifer extraction,has caused serious groundwater depletion.So that the catchment consists of surface water,the management of these resources is essential in order to increase the groundwater recharge.Due to the existence of rivers,the low thickness of the alluvial sediments,groundwater level fluctuations and high uncertainty in the calculation of hydrodynamic coefficients in the watershed,the SWAT and MODFLOW models were used to assess the impact of irrigation return flow on groundwater recharge and the hydrological components of the basin.For this purpose,the irrigation operation tool in the SWAT model was utilized to determine the fixed amounts and time of irrigation for each HRU(Hydrological Response Unit)on the specified day.Since the study area has pressing challenges related to water deficit and sparsely gauged,therefore,this investigation looks actual for regional scale analysis.Model evaluation criteria,RMSE and NRMSE for the simulated groundwater level were 1.8 m and 1.1%respectively.Also,the simulation of surface water flow at the basin outlet,provided satisfactory prediction(R^(2)=0.92,NSE=0.85).Results showed that,the irrigation has affected the surface and groundwater interactions in the watershed,where agriculture heavily depends on irrigation.Annually 11.64 Mm3 water entered to the aquifer by surface recharge(precipitation,irrigation),transmission loss from river and recharge wells 5.8 Mm3 and ground water boundary flow(annually 20.5 Mm^(3)).Water output in the watershed included ground water extraction and groundwater return flow(annually 46.4 Mm^(3))and ground water boundary flow(annually 0.68 Mm^(3)).Overally,the groundwater storage has decreased by 9.14 Mm3 annually in Samalqan aquifer.This method can be applied to simulate the effects of surface water fluxes to groundwater recharge and river-aquifer interaction for areas with stressed aquifers where interaction between surface and groundwater cannot be easily assessed.
文摘The application of the Soil and Water Assessment Tool (SWAT) to the Olifants Basin in South Africa was the focus of our study with emphasis on calibration, validation and uncertainty analysis. The Basin was discretized into 23 sub-basins and 226 Hydrologic Response Units (HRUs) using 3 arc second (90 m × 90 m) pixel resolution SRTM DEM with stream gauge B7H015 as the Basin outlet. Observed stream flow data at B7H015 were used for model calibration (1988-2001) and validation (2002-2013) using the split sample approach. Relative global sensitivity analysis using SUFI-2 algorithm was used to determine sensitive parameters to stream flow for calibration of the model. Performance efficiency of the Olifants SWAT model was assessed using Nash-Sutcliffe (NSE), coefficient of determination (R<sup>2</sup>), Percent Bias (PBIAS) and Root Mean Square Error-Observation Standard deviation Ratio (RSR). Sensitivity analysis revealed in decreasing order of significance, runoff curve number (CN2), alpha bank factor (ALPHA_BNK), soil evaporation compensation factor (ESCO), soil available water capacity (SOIL_AWC, mm H<sub>2</sub>O/mm soil), groundwater delay (GW_ DELAY, days) and groundwater “revap” coefficient (GW_REVAP) to be the most sensitive parameters to stream flow. Analysis of the model during the calibration period gave the following statistics;NSE = 0.88;R<sup>2</sup> = 0.89;PBIAS = -11.49%;RSR = 0.34. On the other hand, statistics during the validation period were NSE = 0.67;R<sup>2 </sup>= 0.79;PBIAS = -20.69%;RSR = 0.57. The observed statistics indicate the applicability of the SWAT model in simulating the hydrology of the Olifants Basin and therefore can be used as a Decision Support Tool (DST) by water managers and other relevant decisions making bodies to influence policy directions on the management of watershed processes especially water resources.
基金Supported by Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science,China(2010B065)National Natural Science Foundation,China(10972080)Fundamental Research Funds for the Central Universities,SCUT,China (2009ZM0186)
文摘[ Objective] The research aimed to establish SWAT distributed hydrologic model and analyze influence of the climatic change on runoff in Beijiang River basin. [ Method] Beijiang River basin as research object, SWAT model was used to simulate runoff in basin. Monthly water flow in Shijiao station from 1961 to 1980 was used to determine model parameter, while monthly water flow from 1981 to 1990 was used to verify. Setting 15 kinds of climate change scenarios, SWAT model was used to simulate influence of the future climatic change on runoff in Beijiang River basin. [Result] Simulated accuracy of the SWAT model was high, and it could be used to simulate runoff in Beijiang River basin. Under the situation of in- variable rainfall, temperature rise made that evaporation capacity increased, and runoff depth decreased. When temperature unchanged, rainfall increase made that evaporation capacity and runoff depth increased somewhat. [ Conclusion] The research could provide reference basis for water re- source management in Beijiang River basin.
文摘[Objective]The study aimed to simulate the production and transportation process of surface runoff,sediment and non-point source pollution in Xincai River basin based on SWAT model.[Method]On the basis of analyzing the principles of SWAT model,the correlative parameters of runoff,sediment and water quality were calibrated,then the spatial and temporal distribution of runoff,sediment and non-point source pollutants in Xincai River basin were studied by using SWAT model.[Result]The results of calibration and validation showed that SWAT model was reasonable and available,and it can be used to simulate the non-point source pollution of Xincai River basin.The simulation results revealed that the load of sediment and various pollutants was the highest in the rainy year,followed by the normal year,while it was the minimum in the dry year,indicating that the production of sediment and non-point source pollutants was closely related to annual runoff.[Conclusion]The research could provide scientific references for the prevention of non-point source pollution in a basin.
基金Supported by the Project of Changchun Science and Technology Bureau(09RY33)
文摘[Objective] The study aimed to simulate the runoff of Shitoukoumen Reservoir basin by using SWAT model. [Method] Based on DEM elevation, land use type, soil type and hydrometeorological data, SWAT model, a distributed hydrological model was established to simulate the monthly runoff of Shitoukoumen Reservoir basin, and the years 2006 and 2010 were chosen as the calibration and validation period respectively. [Result] The simulation results indicated that SWAT model could be used to simulate the runoff of Shitoukoumen Reservoir basin, and the simulation effect was good. However, the response of the model to local rainstorm was not obvious, so that the actual runoff in June and July of 2010 was abnormally higher than the simulation value. [Conclusion] The research could provide theoretical references for the plan and management of water resources in Shitoukoumen Reservoir basin in future.
文摘The purpose of this paper was to implement "Soil and Water Assessment Tool (SWAT)" model and Geographic Information System (GIS) to evaluate the impact of land use changes on stream discharge in Nghinh Tuong watershed (a brand of Cau River) in Northern Vietnam. The watershed was coverd by 56% forestry land, 30% agricultural land and the remain 14% for others. Stream discharge observed data from 2002 to 2007 were used for calibration period and from 2008 to 2012 for validation period. The result showed that two coefficients (NSE and PBIAS) to evaluate model performance were 0.76 and 6.54% for calibration period and 0.87 and 4.74% for validation period, respectively. Stream discharge strongly depends not only on quantity of precipitation but also on land use change. Through the scenario 1, agricultural land (corn, orchard and tea) increases 9,782.67 ha (2.45%), meanwhile forest (forest-mixed) decreases 1,091.77 ha (2.75%) as compared to baseline scenario. Additionally, precipitation increases 3.74% in mean wet season, but decreases 0.5% in mean dry season with respect to baseline period. SWAT model was able to simulate stream discharge and sediment yield for Nghinh Tuong watershed successfully not only for baseline scenario but also for scenario 1. In brief, SWAT proves its ability in simulation stream discharge in subwatershed level. It is a useful tool to assist water quantity and quality management process in Nghinh Tuong watershed. This work one more time indicated that SWAT is useful tool for resources and environment management.
文摘Flash floods are a natural disaster that occurs annually, especially in the mountainous terrain and steep slopes of northern Thailand. The current flood forecasting systems and tools are available but have low accuracy and efficiency. The numbers of rainfall and runoff stations are less, because the access to the station area is difficult. Additionally, the operation and maintenance costs are high. Hydrological modeling of a SWAT (Soil and Water Assessment Tool) was used in this study with the application of three days weather forecast from the NWP (numerical weather prediction), which provided temperature, relative humidity, rainfall, sunshine and wind speed. The data from NWP and SWAT were used to simulate the runoff from the Nan River in the last 10 years (2000-2010). It was found that the simulated flow rate for the main streams using data from NWP were higher than the observations. At the N64 and Nl stations, the ratios of the maximum simulated flow rate to the observations were equal to 108% and 118%, respectively. However, for the tributaries, it was found that the simulated flow rate using NWP data was lower than the observations, but, it was still within the acceptable range of not greater than 20%,6. At N65, D090201 and D090203 stations, the ratio of the maximum simulated flow rate were 90.0%, 83.0% and 86.0%, respectively. This was due to the rainfall from the NWP model being greater than the measured rainfall. The NWP rainfall was distributed all over the area while the rainfall data from the measurements were obtained from specific points. Therefore, the rain from the NWP model is very useful especially for the watershed areas without rain gauge stations. In summary, the data from the NWP can be used with the SWAT model and provides relatively sound results despite the value for the main river being slightly higher than the observed data. Consequently, the output can be used to create a flood map for flash flood warning in the area.
文摘The main objective of this study is to understand the runoff, sediment yield and water quality of the Upper Indus River Basin of Pakistan. To achieve this goal, specific objectives have been met which include, setup of a hydrological model using Soil and Water Assessment Tool (SWAT) then calibration and validation of the hydrological model using river discharges and in the end investigating the performance of the hydrological model by SWAT. This research will have great impacts on socio-economic conditions of Pakistan because study of upper Indus River basin is imperative to provide data needed for its management, and to warrant that it is sustainable to support the increasing population and conservational flows. A set of programmable mapping components MapWindow Geographic Information System (GIS) was used which is an open source GIS based mapping application. It is SWAT used spatially distributed information on elevation, land use, slope and soil. The program Sequential Uncertainty Fitting ver.2 (SUFI-2) in a combination of uncertainty analysis and calibration of outputs was used in SWAT-CUP. SWAT model used input data, which have climate information to obtain results. The observed climate data of temperature gauges and rain gauge were used as input in the SWAT model;the calibration results for three discharge stations were produced. The initial P-factor value was satisfactory but more iteration to attempt narrow uncertainty band with improving goal function, resulted in small percentage of observed data within uncertainty band. A warm up period of three years (1979-1982) was used for simulation of SWAT model. The model was calibrated for selected three catchments for the period 1982-2000 and validated for period 2001-2010. Results are quite comparable with the observed flows.
文摘In the field of the water resources, hydrologic models have been used to assess water quality performance of complex watersheds and river basins. Hydrologic models can provide essential information for making decisions on sustainable management system of water resources within watersheds. The main objective of this study was to validate the performance of the Soil and Water Assessment Tool (SWAT) and the feasibility of using this model as a simulator of runoff at a catchment scale in semi-arid area in Northwestern Tunisia. Calibration and validation of the model output were performed by comparing predicted runoff with corresponding measurements from the Sarrath outlet for the periods 1990-1995 for calibration and 2000-2005 for validation. The time series for the years 1996-1999 showed discrepancies between the measured rainfall and the observed runoff indicating errors due to either the observations or to a dysfunction in the equipments. Sensitivity analysis shows that sensitive parameters for the simulation of discharge include curve number, soil evaporation compensation factor, depth of water in shallow aquifer and slope of subbasin. Statistical comparisons between monthly simulated results and observed data for the calibration period gave a reasonable agreement with a coefficient of determination (R2) greater than 0.75 and Nash-Sutcliffe Coefficient (NSE) equal to 0.72. These values were respectively 0.70 and 0.64 for validation period. Overall, the SWAT model has the capability to predict runoff within a complex semi-arid catchment.
文摘Estimation of runoff volume and sediment load is the main problem that affects the performance of dams due to the reduction in the storage capacity of their reservoirs and their effect on dam efficiency and operation schedule. The simulation models can be considered for this purpose if the continuous field measurements are not available. Soil and Water Assessment Tool (SWAT) and Water Erosion Prediction Project (WEPP) models were applied to estimate the annual runoff volume and sediment load for Duhok Dam Reservoir in north of Duhok/Iraq for the period 1988-2011. The estimated annual runoff volume varied from 2.3 to 34.7 MCM for considered period. Those values were affected by rainfall depth, intensity and runoff coefficient. The resultant annual runoff coefficient for the studied area ranged from 0.05 to 0.35 (average was 0.18) causing an average runoff volume of about 14 MCM. The results of sediment routing indicated that the values of sediment yields varied from 50 to 1400 t/km2/year depending on sub basin properties. The average annual sediment load from the whole watershed is about 120 × 10<sup>3</sup> ton. The estimated total sediment arrived to Duhok Reservoir for the considered period 1988-2011 was about 2.9 × 10<sup>6</sup> ton. The results indicate that both models gave reasonable results in comparison with measured values. Based on statistical criteria, the results of both models are close to gather.
文摘Kurdistan in northern Iraq, a semi-arid region, predominantly a pastureland, is nourished by Lesser Zab, which is the second major tributary of Tigris River. The discharge in the tributary, in recent times, has been experiencing increasing variability contributing to more severe droughts and floods supposedly due to climate change. For a proper appreciation, SWAT model has been used to assess the impact of climate change on its hydrological components for a half-centennial lead time to 2046-2064 and a centennial lead time to 2080-2100. The suitability of the model was first evaluated, and then, outputs from six GCMs were incorporated to evaluate the impacts of climate change on water resources under three emission scenarios: A1B, A2 and B1. The results showed worsening water resources regime.
文摘Abstract: Excess of organic matter and nutrients in water promotes eutrophication process observed in the Ardila River. It was classified as much polluted being critical for Alqueva-Pedrogāo System. The aim of this study was to estimate the transported nutrients loads in a transboundary watershed using the SWAT (soil and water assessment tool) model and to determine the contribution of nutrients load in the entire watershed. Ardila watershed is about 3,711 km^2 extended from Spain (78%) to the eastern part of Portugal (22%). It was discretized into 32 sub-basins using automated delineation routine, and 174 hydrologic response units. Monthly average meteorological data (from 1947 to 1998) were used to generate daily values through the weather generator Model incorporated in SWAT. Real daily precipitation (from 1931 to 2003) was introduced. The model was calibrated and verified for flow (from 1950 to 2000) and nutrients (from 1981 to 1999). Model performance was evaluated using statistical parameters, such as NSE (Nash-Sutcliffe efficiency) and root mean square error (R2). Calibration and verification flow results showed a satisfactory agreement between simulated and measured monthly date from 1962 to 1972 (NSE = 0.8; R^2 = 0.9). The results showed that the most important diffuse pollution comes from the two the main tributary (Spain). The estimated nitrogen and phosphorous loads contribution per year was respectively 72% and 59% in Spain and 28% and 41% in Portugal. The SWAT model was revealed to be a useful tool for an integrated water management approach that might be improved taking into count the WFD (water framework directive).
基金particilly (Dalila Serpa,Jan Jacob Keizer)supported by CESAM (UIDP/50017/2020+UIDB/50017/2020+LA/P/0094/2020)by FCT/MCTES,through national fundsthe project WAFLE (PTDC/ASP-SIL/31573/2017)funded by FEDER,through COMPETE2020–Programa OperacionalCompetitividade e Internacionalizacao (POCI)by national funds (OE),through FCT/MCTES。
文摘Worldwide,forests are vital in the regulation of the water cycle regulation and in water balance allocation.Knowledge of ecohydrological responses of production forests is essential to support management strategies,especially where water is already scarce.Shifting climatological patterns are expected to impact thermopluviometric regimes,water cycle components,hydrological responses,and plant physiology,evapotranspiration rates,crop productivity and land management operations.This work(1)assessed the impacts of different predicted climate conditions on water yield;(2)inferred the impacts of climate change on biomass production on eucalypt-to-eucalypt succes sion.To this end,the widely accepted Soil and Water Assessment Tool(SWAT)was run with the RCA,HIRHAM5 and RACMO climate models for two emission scenarios(RCP 4.5 and8.5).Three 12-year periods were considered to simulate tree growth under coppice regime.The results revealed an overall reduction in streamflow and water yield in the catchment in line with the projected reduction in total annual precipitation.Moreover,HIRHAM5 and RACMO models forecast a slight shift in seasonal streamflow of up to 2 months(for2024-2048)in line with the projected increase in precipitation from May to September.For biomass production,the extreme climate model(RCA)and severe emis sion scenario(RCP 8.5)predicted a decrease up to 46%.However,in the less extreme and more-correlated(with actual catchment climate conditions)climate models(RACMO and HIRHAM5)and in the less extreme emission scenario(RCP 4.5),biomass production increased(up to 20%),and the growth cycle was slightly reduced.SWAT was proven to be a valuable tool to assess climate change impacts on a eucalypt-dominated catchment and is a suitable decision-support tool for forest managers.
基金the National Natural Science Foundation of China(41867030,41971036)the key Natural Science Foundation of Gansu Province(23JRRA698)+2 种基金the key Research and Development Program of Gansu Province(22YF7NA122)the Oasis Scientific Research achievements Breakthrough Action Plan Project of Northwest normal University(NWNU-LZKX-202302)the cultivation Plan Project of the Major(key)Project of Northwest normal University.
文摘Climate change is the dominant factor affecting the hydrological process, it is of great significance to simulate and predict its influence on water resources management, socio-economic activities, and sustainable development in the future. In this paper, the Xiying River Basin was taken as the study area, China Atmospheric Assimilation Driven Data Set(CMADS) and observation data from the Jiutiaoling station were used to simulate runoff of the SWAT model and calibrate and verify model parameters. On this basis, runoff change of the basin under the future climate scenario of CMIP6 was predicted. Our research shows that:(1) The contribution rates of climate change and human activities to runoff increase of the Xiying River are 89.17% and 10.83%, respectively. Climate change is the most important factor affecting runoff change of the Xiying River.(2) In these three different emission scenarios of SSP1-2.6, SSP2-4.5 and SSP5-8.5 in CMIP6 climate model, the average temperature increased by0.61, 1.09 and 1.74 C, respectively, in the Xiying River Basin from 2017 to 2050. Average precipitation increased by 14.36, 66.88, and 142.73 mm, respectively, and runoff increased by 15, 24, and 35 million m3, respectively.The effect of climate change on runoff will continue to deepen in the future.
基金supported by the National Natural Science Foundation of China (Grant No. 40471018)the National Basic Research Program of China (973 Program, Grant No. 2002 CB412310)Hundred Talents Programme of the Chinese Academy of Sciences
文摘With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas). Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The Water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge' and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.
基金Under the auspices of the National Key R&D Program(No.2019YFC0409104)the National Natural Science Foundation of China(No.41830643)the National Science and Technology Basic Resources Survey Project(No.2019FY101703)。
文摘Changes in natural geographic features and landscape patterns directly influence the hydrology and non-point source pollution processes in the watershed;however,to slow down non-point source pollution,it is necessary to distinguish their effects.But the non-point source pollution process is interactional as a result of multiple factors,and the collinearity between multiple independent variables limits our ability of reason diagnosis.Thus,taking the Burhatong River Basin,Northeast China as an example,the methods of hydrological simulation,geographic detectors,and redundancy analysis have been combined to determine the impact of natural geographic features and landscape patterns on non-point source pollution in the watershed.The Soil&Water Assessment Tool(SWAT)has been adopted to simulate the spatial and temporal distribution characteristics of total nitrogen and total phosphorus in the watershed.The results show that the proportions of agricultural land and forest area and the location-weighted landscape contrast index(LWLI)are the main indicators influencing the rivers total nitrogen and total phosphorus.The interaction of these indicators with natural geographic features and landscape configuration indicators also significantly influences the changes in total nitrogen(TN)and total phosphorus(TP).Natural geographical features and landscape patterns have different comprehensive effects on non-point source pollution in the dry and wet seasons.TN and TP loads are affected mainly by the change in landscape pattern,especially in the wet season.Although the ecological restoration program has improved forest coverage,the purification effect of increased forest coverage on the water quality in the watershed may be offset by the negative impact of increased forest fragmentation.The high concentration and complexity of farmland patches increase the risk of non-point source pollution spread to a certain extent.