Deposition of the H2A.Z histone variant by the SWR1 complex (SWRI-C) in regulatory regions of specific loci modulates transcription. Characterization of mutations in Arabidopsis thaliana homologs of yeast SWRI-C has...Deposition of the H2A.Z histone variant by the SWR1 complex (SWRI-C) in regulatory regions of specific loci modulates transcription. Characterization of mutations in Arabidopsis thaliana homologs of yeast SWRI-C has revealed a role for H2A.Z exchange in a variety of developmental processes. Nevertheless, the exact composition of plant SWRI-C and how it is recruited to target genes remains to be established. Here we show that SWC4, the Arabidopsis homolog of yeast SANT domain protein Swc4/Eaf2, is a DNA-binding protein that interacts with SWR1-C subunits. We demonstrate that the swc4-1 knockout mutant is embryo- lethal, while SWC4 RNAi knockdown lines display pleiotropic phenotypic alterations in vegetative and repro- ductive traits, including acceleration of flowering time, indicating that SWC4 controls post-embryonic processes. Transcriptomic analyses and genome-wide profiling of H2A.Z indicate that SWC4 represses tran- scription of a number of genes, including the floral integrator FT and key transcription factors, mainly by modulating H2A.Z deposition. Interestingly, SWC4 silencing does not affect H2A.Z deposition at the FLC locus nor expression of this gene, a master regulator of flowering previously shown to be controlled by SWR1-C. Importantly, we find that SWC4 recognizes specific AT-rich DNA elements in the chromatin regions of target genes and that SWC4 silencing impairs SWRI-C binding at FT. Collectively, our data suggest that SWC4 regulates plant growth and development by aiding SWR1-C recruitment and modulating H2A.Z deposition.展开更多
The circadian clock entrained by environmental light-dark cycles enables plants to fine-tune diurnal growth and developmental responses.Here,we show that physical interactions among evening clock components,including ...The circadian clock entrained by environmental light-dark cycles enables plants to fine-tune diurnal growth and developmental responses.Here,we show that physical interactions among evening clock components,including PSEUDO-RESPONSE REGULATOR 5(PRR5),TIMING OF CAB EXPRESSION 1(TOC1),and the Evening Complex(EC)component EARLY FLOWERING 3(ELF3),define a diurnal repressive chromatin structure specifically at the PHYTOCHROME-INTERACTING FACTOR 4(PIF4)locus in Arabidopsis.These three clock components act interdependently as well as independently to repress nighttime hypocotyl elongation,as hypocotyl elongation rate dramatically increased specifically at nighttime in the prr5-1 toc1-21 elf3-1 mutant,concomitantly with a substantial increase in PIF4 expression.Transcriptional repression of PIF4 by ELF3,PRR5,and TOC1 is mediated by the SWI2/SNF2-RELATED(SWR1)chromatin remodeling complex,which incorporates histone H2A.Z at thePIF4 locus,facilitating robust epigenetic suppression ofPIF4 during the evening.Overall,these findings demonstrate that the PRR-EC-SWR1 complex represses hypocotyl elongation at night through a distinctive chromatin domain covering PIF4 chromatin.展开更多
文摘Deposition of the H2A.Z histone variant by the SWR1 complex (SWRI-C) in regulatory regions of specific loci modulates transcription. Characterization of mutations in Arabidopsis thaliana homologs of yeast SWRI-C has revealed a role for H2A.Z exchange in a variety of developmental processes. Nevertheless, the exact composition of plant SWRI-C and how it is recruited to target genes remains to be established. Here we show that SWC4, the Arabidopsis homolog of yeast SANT domain protein Swc4/Eaf2, is a DNA-binding protein that interacts with SWR1-C subunits. We demonstrate that the swc4-1 knockout mutant is embryo- lethal, while SWC4 RNAi knockdown lines display pleiotropic phenotypic alterations in vegetative and repro- ductive traits, including acceleration of flowering time, indicating that SWC4 controls post-embryonic processes. Transcriptomic analyses and genome-wide profiling of H2A.Z indicate that SWC4 represses tran- scription of a number of genes, including the floral integrator FT and key transcription factors, mainly by modulating H2A.Z deposition. Interestingly, SWC4 silencing does not affect H2A.Z deposition at the FLC locus nor expression of this gene, a master regulator of flowering previously shown to be controlled by SWR1-C. Importantly, we find that SWC4 recognizes specific AT-rich DNA elements in the chromatin regions of target genes and that SWC4 silencing impairs SWRI-C binding at FT. Collectively, our data suggest that SWC4 regulates plant growth and development by aiding SWR1-C recruitment and modulating H2A.Z deposition.
基金supported by the Basic Science Research(NRF2022R1A2B5B02001266 to P.J.S.and NRF-2023R1A2C3002386 to E.O.)Basic Research Laboratory(NRF-2022R1A4A3024451)programs provided by the National Research Foundation of Korea.
文摘The circadian clock entrained by environmental light-dark cycles enables plants to fine-tune diurnal growth and developmental responses.Here,we show that physical interactions among evening clock components,including PSEUDO-RESPONSE REGULATOR 5(PRR5),TIMING OF CAB EXPRESSION 1(TOC1),and the Evening Complex(EC)component EARLY FLOWERING 3(ELF3),define a diurnal repressive chromatin structure specifically at the PHYTOCHROME-INTERACTING FACTOR 4(PIF4)locus in Arabidopsis.These three clock components act interdependently as well as independently to repress nighttime hypocotyl elongation,as hypocotyl elongation rate dramatically increased specifically at nighttime in the prr5-1 toc1-21 elf3-1 mutant,concomitantly with a substantial increase in PIF4 expression.Transcriptional repression of PIF4 by ELF3,PRR5,and TOC1 is mediated by the SWI2/SNF2-RELATED(SWR1)chromatin remodeling complex,which incorporates histone H2A.Z at thePIF4 locus,facilitating robust epigenetic suppression ofPIF4 during the evening.Overall,these findings demonstrate that the PRR-EC-SWR1 complex represses hypocotyl elongation at night through a distinctive chromatin domain covering PIF4 chromatin.