The existing problems in the manufacture of SWRH82B high carbon steel wire were discussed by sampling and testing the microstructure and properties of the steel from the workshop. To solve the problems, the experiment...The existing problems in the manufacture of SWRH82B high carbon steel wire were discussed by sampling and testing the microstructure and properties of the steel from the workshop. To solve the problems, the experimental parameters for thermal simulation were optimized, and the thermal simulating experiments were carded out on a Gleeblel500 thermal simulator. The process parameters for the manufacture were optimized after analysis of the data, and the productive experiments were performed after the water box in front of the no-twist blocks was reconstructed, to control the temperature of the loop layer. The results from the productive experiments showed that the cooling rate of 10-15℃/s was reasonable before phase transformation, about 5℃/s during phase transformation, and 600-620℃ was the suitable starting temperature for phase transformation. The ultimate strength of the Ф11.0 mm wire was increased to 1150-1170 MPa with an increase of 20-30 MPa, the percentage reduction of section was to 34%-36% with an increase of 1%-3% by testing the finished products after reconstruction.展开更多
文摘The existing problems in the manufacture of SWRH82B high carbon steel wire were discussed by sampling and testing the microstructure and properties of the steel from the workshop. To solve the problems, the experimental parameters for thermal simulation were optimized, and the thermal simulating experiments were carded out on a Gleeblel500 thermal simulator. The process parameters for the manufacture were optimized after analysis of the data, and the productive experiments were performed after the water box in front of the no-twist blocks was reconstructed, to control the temperature of the loop layer. The results from the productive experiments showed that the cooling rate of 10-15℃/s was reasonable before phase transformation, about 5℃/s during phase transformation, and 600-620℃ was the suitable starting temperature for phase transformation. The ultimate strength of the Ф11.0 mm wire was increased to 1150-1170 MPa with an increase of 20-30 MPa, the percentage reduction of section was to 34%-36% with an increase of 1%-3% by testing the finished products after reconstruction.