In this paper, we solve a problem on the existence of conjugate symplecticity of linear multi-step methods (LMSM), the negative result is obtained. [ABSTRACT FROM AUTHOR]
A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions o...A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.展开更多
Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods,making it challenging to ensure the fault diagnosis accuracy and relia...Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods,making it challenging to ensure the fault diagnosis accuracy and reliability.A novel approach integrating enhanced Symplectic geometry mode decomposition with cosine difference limitation and calculus operator(ESGMD-CC)and artificial fish swarm algorithm(AFSA)optimized extreme learning machine(ELM)is proposed in this paper to enhance the extraction capability of fault features and thus improve the accuracy of fault diagnosis.Firstly,SGMD decomposes the raw vibration signal into multiple Symplectic geometry components(SGCs).Secondly,the iterations are reset by the cosine difference limitation to effectively separate the redundant components from the representative components.Additionally,the calculus operator is performed to strengthen weak fault features and make them easier to extract,and the singular value decomposition(SVD)weighted by power spectrum entropy(PSE)can be utilized as the sample feature representation.Finally,AFSA iteratively optimized ELM is adopted as the optimized classifier for fault identification.The superior performance of the proposed method has been validated by various experiments.展开更多
We show that if the fiber of a closed 4-dimensional mapping torus X is reducible and not S2× S1 or RP3#P3, then the virtual first Betti number of X is infinite and X is not virtually symplectic. This confirms two...We show that if the fiber of a closed 4-dimensional mapping torus X is reducible and not S2× S1 or RP3#P3, then the virtual first Betti number of X is infinite and X is not virtually symplectic. This confirms two conjectures made by Li and Ni (2014) in an earlier paper.展开更多
An analytical method,called the symplectic mathematical method,is proposed to study the wave propagation in a spring-mass chain with gradient arranged local resonators and nonlinear ground springs.Combined with the li...An analytical method,called the symplectic mathematical method,is proposed to study the wave propagation in a spring-mass chain with gradient arranged local resonators and nonlinear ground springs.Combined with the linearized perturbation approach,the symplectic transform matrix for a unit cell of the weakly nonlinear graded metamaterial is derived,which only relies on the state vector.The results of the dispersion relation obtained with the symplectic mathematical method agree well with those achieved by the Bloch theory.It is shown that wider and lower frequency bandgaps are formed when the hardening nonlinearity and incident wave intensity increase.Subsequently,the displacement response and transmission performance of nonlinear graded metamaterials with finite length are studied.The dual tunable effects of nonlinearity and gradation on the wave propagation are explored under different excitation frequencies.For small excitation frequencies,the gradient parameter plays a dominant role compared with the nonlinearity.The reason is that the gradient tuning aims at the gradient arrangement of local resonators,which is limited by the critical value of the local resonator mass.In contrast,for larger excitation frequencies,the hardening nonlinearity is dominant and will contribute to the formation of a new bandgap.展开更多
Wrinkles in flat graded elastic layers have been recently described as a timevarying Hamiltonian system by the energy method.Cylindrical core/shell structures can also undergo surface instabilities under the external ...Wrinkles in flat graded elastic layers have been recently described as a timevarying Hamiltonian system by the energy method.Cylindrical core/shell structures can also undergo surface instabilities under the external pressure.In this study,we show that by treating the radial direction as a pseudo-time variable,the graded core/shell system with radially decaying elastic properties can also be described within the symplectic framework.In combination with the shell buckling equation,the present paper addresses the surface wrinkling of graded core/shell structures subjected to the uniform external pressure by solving a series of ordinary differential equations with varying coefficients.Three representative gradient distributions are showcased,and the predicted critical pressure and critical wave number are verified by finite element simulations.The symplectic framework provides an efficient and accurate approach to understand the surface instability and morphological evolution in curved biological tissues and engineered structures.展开更多
We propose a novel symplectic finite element method to solve the structural dynamic responses of linear elastic systems.For the dynamic responses of continuous medium structures,the traditional numerical algorithm is ...We propose a novel symplectic finite element method to solve the structural dynamic responses of linear elastic systems.For the dynamic responses of continuous medium structures,the traditional numerical algorithm is the dissipative algorithm and cannot maintain long-term energy conservation.Thus,a symplectic finite element method with energy conservation is constructed in this paper.A linear elastic system can be discretized into multiple elements,and a Hamiltonian system of each element can be constructed.The single element is discretized by the Galerkin method,and then the Hamiltonian system is constructed into the Birkhoffian system.Finally,all the elements are combined to obtain the vibration equation of the continuous system and solved by the symplectic difference scheme.Through the numerical experiments of the vibration response of the Bernoulli-Euler beam and composite plate,it is found that the vibration response solution and energy obtained with the algorithm are superior to those of the Runge-Kutta algorithm.The results show that the symplectic finite element method can keep energy conservation for a long time and has higher stability in solving the dynamic responses of linear elastic systems.展开更多
The authors proposed a symplectic stereo-modeling method(SSM)in the Birkhoffian dynam-ics and apply it to the visco-acoustic least-squares reverse time migration(LSRTM).The SSM adopts ste-reo-modeling operator in spac...The authors proposed a symplectic stereo-modeling method(SSM)in the Birkhoffian dynam-ics and apply it to the visco-acoustic least-squares reverse time migration(LSRTM).The SSM adopts ste-reo-modeling operator in space and symplectic Runge-Kutta scheme in time,resulting in great ability in suppressing numerical dispersion and long-time computing.These advantages are further confirmed by numerical dispersion analysis,long-time computation test and computational efficiency comparison.After these theoretical analyses and experiments,acoustic and visco-acoustic LSRTM are tested and compared between SSM method and the conventional symplectic method(CSM)using the fault and marmousi models.Meanwhile,dynamic source encoding and exponential decay moving average gradients method are adopted to reduce the computation cost and improve the convergence rate.The imaging results show that LSRTM based on visco-acoustic wave equations effectively takes into account the influence of viscosity can therefore compensate for the amplitude attenuation.Besides,SSM method not only has high numerical accuracy and computational efficiency,but also performs effectively in LSRTM.展开更多
We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this te...We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this technique uses an eighth-orderaccurate nearly analytic discrete (NAD) operator to discretize high-order spatial differentialoperators and employs a second-order SPRK method to discretize temporal derivatives.The stability criteria and numerical dispersion relations of the eighth-order NSPRK methodare given by a semi-analytical method and are tested by numerical experiments. We alsoshow the differences of the numerical dispersions between the eighth-order NSPRK methodand conventional numerical methods such as the fourth-order NSPRK method, the eighth-order Lax-Wendroff correction (LWC) method and the eighth-order staggered-grid (SG)method. The result shows that the ability of the eighth-order NSPRK method to suppress thenumerical dispersion is obviously superior to that of the conventional numerical methods. Inthe same computational environment, to eliminate visible numerical dispersions, the eighth-order NSPRK is approximately 2.5 times faster than the fourth-order NSPRK and 3.4 timesfaster than the fourth-order SPRK, and the memory requirement is only approximately47.17% of the fourth-order NSPRK method and 49.41% of the fourth-order SPRK method,which indicates the highest computational efficiency. Modeling examples for the two-layermodels such as the heterogeneous and Marmousi models show that the wavefields generatedby the eighth-order NSPRK method are very clear with no visible numerical dispersion.These numerical experiments illustrate that the eighth-order NSPRK method can effectivelysuppress numerical dispersion when coarse grids are adopted. Therefore, this methodcan greatly decrease computer memory requirement and accelerate the forward modelingproductivity. In general, the eighth-order NSPRK method has tremendous potential value forseismic exploration and seismology research.展开更多
The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the ...The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the continuous finite element method (CFEM) belongs to the later. We find and prove the equivalence of one kind of the implicit RK method and the CFEM, give the coefficient table of the CFEM to simplify its computation, propose a new standard to measure algorithms for Hamiltonian systems, and define another class of algorithms --the regular method. Finally, numerical experiments are given to verify the theoretical results.展开更多
The 3-dimensional couple equations of magneto-electro-elastic structures are derived under Hamiltonian system based on the Hamilton principle. The problem of single sort of variables is converted into the problem of d...The 3-dimensional couple equations of magneto-electro-elastic structures are derived under Hamiltonian system based on the Hamilton principle. The problem of single sort of variables is converted into the problem of double sorts of variables, and the Hamilton canonical equations are established. The 3-dimensional problem of magneto-electro-elastic structure which is investigated in Euclidean space commonly is converted into symplectic system. At the same time the Lagrange system is converted into Hamiltonian system. As an example, the dynamic characteristics of the simply supported functionally graded magneto-electro-elastic material (FGMM) plate and pipe are investigated. Finally, the problem is solved by symplectic algorithm. The results show that the physical quantities of displacement, electric potential and magnetic potential etc. change continuously at the interfaces between layers under the transverse pressure while some other physical quantities such as the stress, electric and magnetic displacement are not continuous. The dynamic stiffness is increased by the piezoelectric effect while decreased by the piezomagnetic effect.展开更多
In this paper the geometric meaning of robot systems is expounded based on the theory of multibody system. The error accumulation for the known algorithm is analyzed and the cause of ‘Energy consumption’ is revealed...In this paper the geometric meaning of robot systems is expounded based on the theory of multibody system. The error accumulation for the known algorithm is analyzed and the cause of ‘Energy consumption’ is revealed, the relationship between the coefficients of dynamic equation is derived so as to establish the canonical equations. The error accumulation of dynamics can be eliminated by using canonical equations and the symplectic integral method so that the computational accuracy can be ensured effectively. As an example, a planar robotics system is considered.展开更多
A universal symplectic structure for a Newtonian system including nonconservative cases can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics. In this paper the symplectic geometry...A universal symplectic structure for a Newtonian system including nonconservative cases can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics. In this paper the symplectic geometry structure of Birkhoffian system is discussed, then the symplecticity of Birkhoffian phase flow is presented. Based on these properties we give a way to construct symplectic schemes for Birkhoffian systems by using the generating function method.展开更多
For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process...For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process is simple and straightforward. In this paper, based on the seminal idea of the generalized mixed methods, a simple, stable, and highly accurate 8-node noncompatible symplectic element(NCSE8) was developed by the combination of the modified Hellinger-Reissner mixed variational principle and the minimum energy principle. To ensure the accuracy of in-plane stress results, a simultaneous equation approach was also suggested. Numerical experimentation shows that the accuracy of stress results of NCSE8 are nearly the same as that of displacement methods, and they are in good agreement with the exact solutions when the mesh is relatively fine. NCSE8 has advantages of the clearing concept, easy calculation by a finite element computer program, higher accuracy and wide applicability for various linear elasticity compressible and nearly incompressible material problems. It is possible that NCSE8 becomes even more advantageous for the fracture problems due to its better accuracy of stresses.展开更多
The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-f...The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-form natural mode satisfies the governing equation of the eigenvalue problem of thin plate exactly and is applicable for any types of boundary conditions. With all combinations of simplysupported (S) and clamped (C) boundary conditions applied to the natural mode, the mode shapes are obtained uniquely and two eigenvalue equations are derived with respect to two spatial coordinates, with the aid of which the normal modes and frequencies are solved exactly. It was believed that the exact eigensolutions for cases SSCC, SCCC and CCCC were unable to be obtained, however, they are successfully found in this paper. Comparisons between the present results and the FEM results validate the present exact solutions, which can thus be taken as the benchmark for verifying different approximate approaches.展开更多
In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference...In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference discrete Euler?Lagrange equations and canonical ones for the difference discrete versions of classical mechanics and field theory as well as the difference discrete versions for the Euler?Lagrange cohomology and applied them to get the necessary and sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the Lagrangian and Hamiltonian formalisms. In this paper, we apply the difference discrete variational principle and Euler?Lagrange cohomological approach directly to the symplectic and multisymplectic algorithms. We will show that either Hamiltonian schemes or Lagrangian ones in both the symplectic and multisymplectic algorithms are variational integrators and their difference discrete symplectic structure-preserving properties can always be established not only in the solution space but also in the function space if and only if the related closed Euler?Lagrange cohomological conditions are satisfied.展开更多
In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in...In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in both the Lagrangian and Hamiltonian formalisms for discrete mechanics and field theory in the framework of multi-parameter differential approach. In terms of the difference discrete Euler?Lagrange cohomological concepts, we show that the symplectic or multisymplectic geometry and their difference discrete structure-preserving properties can always be established not only in the solution spaces of the discrete Euler?Lagrange or canonical equations derived by the difference discrete variational principle but also in the function space in each case if and only if the relevant closed Euler?Lagrange cohomological conditions are satisfied.展开更多
This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish d...This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method.展开更多
基金China State Major Key Project for Basic ResearchesNational Natural Science Foundation of China! (No. 19801034)Bureau of
文摘In this paper, we solve a problem on the existence of conjugate symplecticity of linear multi-step methods (LMSM), the negative result is obtained. [ABSTRACT FROM AUTHOR]
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China (Grant Nos.2021MS01004 and 2022QN01008)the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No.10000-21311201/165)。
文摘A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.
基金supported by National Key Research and Development Project (2020YFE0204900)National Natural Science Foundation of China (Grant Numbers 62073193,61873333)Key Research and Development Plan of Shandong Province (Grant Numbers 2019TSLH0301,2021CXGC010204).
文摘Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods,making it challenging to ensure the fault diagnosis accuracy and reliability.A novel approach integrating enhanced Symplectic geometry mode decomposition with cosine difference limitation and calculus operator(ESGMD-CC)and artificial fish swarm algorithm(AFSA)optimized extreme learning machine(ELM)is proposed in this paper to enhance the extraction capability of fault features and thus improve the accuracy of fault diagnosis.Firstly,SGMD decomposes the raw vibration signal into multiple Symplectic geometry components(SGCs).Secondly,the iterations are reset by the cosine difference limitation to effectively separate the redundant components from the representative components.Additionally,the calculus operator is performed to strengthen weak fault features and make them easier to extract,and the singular value decomposition(SVD)weighted by power spectrum entropy(PSE)can be utilized as the sample feature representation.Finally,AFSA iteratively optimized ELM is adopted as the optimized classifier for fault identification.The superior performance of the proposed method has been validated by various experiments.
基金supported by National Science Foundation of USA(Grant No.DMS1252992)an Alfred P.Sloan Research Fellowship
文摘We show that if the fiber of a closed 4-dimensional mapping torus X is reducible and not S2× S1 or RP3#P3, then the virtual first Betti number of X is infinite and X is not virtually symplectic. This confirms two conjectures made by Li and Ni (2014) in an earlier paper.
基金Project supported by the National Natural Science Foundation of China(Nos.12072266,12172297,11972287,and 12072262)the Open Foundation of the State Key Laboratory of Structural Analysis for Industrial Equipment of China(No.GZ22106)。
文摘An analytical method,called the symplectic mathematical method,is proposed to study the wave propagation in a spring-mass chain with gradient arranged local resonators and nonlinear ground springs.Combined with the linearized perturbation approach,the symplectic transform matrix for a unit cell of the weakly nonlinear graded metamaterial is derived,which only relies on the state vector.The results of the dispersion relation obtained with the symplectic mathematical method agree well with those achieved by the Bloch theory.It is shown that wider and lower frequency bandgaps are formed when the hardening nonlinearity and incident wave intensity increase.Subsequently,the displacement response and transmission performance of nonlinear graded metamaterials with finite length are studied.The dual tunable effects of nonlinearity and gradation on the wave propagation are explored under different excitation frequencies.For small excitation frequencies,the gradient parameter plays a dominant role compared with the nonlinearity.The reason is that the gradient tuning aims at the gradient arrangement of local resonators,which is limited by the critical value of the local resonator mass.In contrast,for larger excitation frequencies,the hardening nonlinearity is dominant and will contribute to the formation of a new bandgap.
基金Project supported by the National Natural Science Foundation of China(No.11972259)。
文摘Wrinkles in flat graded elastic layers have been recently described as a timevarying Hamiltonian system by the energy method.Cylindrical core/shell structures can also undergo surface instabilities under the external pressure.In this study,we show that by treating the radial direction as a pseudo-time variable,the graded core/shell system with radially decaying elastic properties can also be described within the symplectic framework.In combination with the shell buckling equation,the present paper addresses the surface wrinkling of graded core/shell structures subjected to the uniform external pressure by solving a series of ordinary differential equations with varying coefficients.Three representative gradient distributions are showcased,and the predicted critical pressure and critical wave number are verified by finite element simulations.The symplectic framework provides an efficient and accurate approach to understand the surface instability and morphological evolution in curved biological tissues and engineered structures.
基金supported by the National Natural Science Foundation of China(Nos.12132001 and 52192632)。
文摘We propose a novel symplectic finite element method to solve the structural dynamic responses of linear elastic systems.For the dynamic responses of continuous medium structures,the traditional numerical algorithm is the dissipative algorithm and cannot maintain long-term energy conservation.Thus,a symplectic finite element method with energy conservation is constructed in this paper.A linear elastic system can be discretized into multiple elements,and a Hamiltonian system of each element can be constructed.The single element is discretized by the Galerkin method,and then the Hamiltonian system is constructed into the Birkhoffian system.Finally,all the elements are combined to obtain the vibration equation of the continuous system and solved by the symplectic difference scheme.Through the numerical experiments of the vibration response of the Bernoulli-Euler beam and composite plate,it is found that the vibration response solution and energy obtained with the algorithm are superior to those of the Runge-Kutta algorithm.The results show that the symplectic finite element method can keep energy conservation for a long time and has higher stability in solving the dynamic responses of linear elastic systems.
基金Supported by projects of National Natural Science Foundation of China(Nos.41604105,41974114)Fundamental Research Funds for Central Universities(No.2020YQLX01).
文摘The authors proposed a symplectic stereo-modeling method(SSM)in the Birkhoffian dynam-ics and apply it to the visco-acoustic least-squares reverse time migration(LSRTM).The SSM adopts ste-reo-modeling operator in space and symplectic Runge-Kutta scheme in time,resulting in great ability in suppressing numerical dispersion and long-time computing.These advantages are further confirmed by numerical dispersion analysis,long-time computation test and computational efficiency comparison.After these theoretical analyses and experiments,acoustic and visco-acoustic LSRTM are tested and compared between SSM method and the conventional symplectic method(CSM)using the fault and marmousi models.Meanwhile,dynamic source encoding and exponential decay moving average gradients method are adopted to reduce the computation cost and improve the convergence rate.The imaging results show that LSRTM based on visco-acoustic wave equations effectively takes into account the influence of viscosity can therefore compensate for the amplitude attenuation.Besides,SSM method not only has high numerical accuracy and computational efficiency,but also performs effectively in LSRTM.
基金This research was supported by the National Natural Science Foundation of China (Nos. 41230210 and 41204074), the Science Foundation of the Education Department of Yunnan Province (No. 2013Z152), and Statoil Company (Contract No. 4502502663).
文摘We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this technique uses an eighth-orderaccurate nearly analytic discrete (NAD) operator to discretize high-order spatial differentialoperators and employs a second-order SPRK method to discretize temporal derivatives.The stability criteria and numerical dispersion relations of the eighth-order NSPRK methodare given by a semi-analytical method and are tested by numerical experiments. We alsoshow the differences of the numerical dispersions between the eighth-order NSPRK methodand conventional numerical methods such as the fourth-order NSPRK method, the eighth-order Lax-Wendroff correction (LWC) method and the eighth-order staggered-grid (SG)method. The result shows that the ability of the eighth-order NSPRK method to suppress thenumerical dispersion is obviously superior to that of the conventional numerical methods. Inthe same computational environment, to eliminate visible numerical dispersions, the eighth-order NSPRK is approximately 2.5 times faster than the fourth-order NSPRK and 3.4 timesfaster than the fourth-order SPRK, and the memory requirement is only approximately47.17% of the fourth-order NSPRK method and 49.41% of the fourth-order SPRK method,which indicates the highest computational efficiency. Modeling examples for the two-layermodels such as the heterogeneous and Marmousi models show that the wavefields generatedby the eighth-order NSPRK method are very clear with no visible numerical dispersion.These numerical experiments illustrate that the eighth-order NSPRK method can effectivelysuppress numerical dispersion when coarse grids are adopted. Therefore, this methodcan greatly decrease computer memory requirement and accelerate the forward modelingproductivity. In general, the eighth-order NSPRK method has tremendous potential value forseismic exploration and seismology research.
基金Project supported by the National Natural Science Foundation of China (No. 11071067)the Hunan Graduate Student Science and Technology Innovation Project (No. CX2011B184)
文摘The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the continuous finite element method (CFEM) belongs to the later. We find and prove the equivalence of one kind of the implicit RK method and the CFEM, give the coefficient table of the CFEM to simplify its computation, propose a new standard to measure algorithms for Hamiltonian systems, and define another class of algorithms --the regular method. Finally, numerical experiments are given to verify the theoretical results.
文摘The 3-dimensional couple equations of magneto-electro-elastic structures are derived under Hamiltonian system based on the Hamilton principle. The problem of single sort of variables is converted into the problem of double sorts of variables, and the Hamilton canonical equations are established. The 3-dimensional problem of magneto-electro-elastic structure which is investigated in Euclidean space commonly is converted into symplectic system. At the same time the Lagrange system is converted into Hamiltonian system. As an example, the dynamic characteristics of the simply supported functionally graded magneto-electro-elastic material (FGMM) plate and pipe are investigated. Finally, the problem is solved by symplectic algorithm. The results show that the physical quantities of displacement, electric potential and magnetic potential etc. change continuously at the interfaces between layers under the transverse pressure while some other physical quantities such as the stress, electric and magnetic displacement are not continuous. The dynamic stiffness is increased by the piezoelectric effect while decreased by the piezomagnetic effect.
文摘In this paper the geometric meaning of robot systems is expounded based on the theory of multibody system. The error accumulation for the known algorithm is analyzed and the cause of ‘Energy consumption’ is revealed, the relationship between the coefficients of dynamic equation is derived so as to establish the canonical equations. The error accumulation of dynamics can be eliminated by using canonical equations and the symplectic integral method so that the computational accuracy can be ensured effectively. As an example, a planar robotics system is considered.
基金The project supported by the Special Funds for State Key Basic Research Projects under Grant No.G1999,032800
文摘A universal symplectic structure for a Newtonian system including nonconservative cases can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics. In this paper the symplectic geometry structure of Birkhoffian system is discussed, then the symplecticity of Birkhoffian phase flow is presented. Based on these properties we give a way to construct symplectic schemes for Birkhoffian systems by using the generating function method.
基金supported by the National Natural Science Foundations of China (Grant 11502286)
文摘For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process is simple and straightforward. In this paper, based on the seminal idea of the generalized mixed methods, a simple, stable, and highly accurate 8-node noncompatible symplectic element(NCSE8) was developed by the combination of the modified Hellinger-Reissner mixed variational principle and the minimum energy principle. To ensure the accuracy of in-plane stress results, a simultaneous equation approach was also suggested. Numerical experimentation shows that the accuracy of stress results of NCSE8 are nearly the same as that of displacement methods, and they are in good agreement with the exact solutions when the mesh is relatively fine. NCSE8 has advantages of the clearing concept, easy calculation by a finite element computer program, higher accuracy and wide applicability for various linear elasticity compressible and nearly incompressible material problems. It is possible that NCSE8 becomes even more advantageous for the fracture problems due to its better accuracy of stresses.
基金supported by the National Natural Science Foundation of China (10772014)
文摘The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-form natural mode satisfies the governing equation of the eigenvalue problem of thin plate exactly and is applicable for any types of boundary conditions. With all combinations of simplysupported (S) and clamped (C) boundary conditions applied to the natural mode, the mode shapes are obtained uniquely and two eigenvalue equations are derived with respect to two spatial coordinates, with the aid of which the normal modes and frequencies are solved exactly. It was believed that the exact eigensolutions for cases SSCC, SCCC and CCCC were unable to be obtained, however, they are successfully found in this paper. Comparisons between the present results and the FEM results validate the present exact solutions, which can thus be taken as the benchmark for verifying different approximate approaches.
文摘In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference discrete Euler?Lagrange equations and canonical ones for the difference discrete versions of classical mechanics and field theory as well as the difference discrete versions for the Euler?Lagrange cohomology and applied them to get the necessary and sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the Lagrangian and Hamiltonian formalisms. In this paper, we apply the difference discrete variational principle and Euler?Lagrange cohomological approach directly to the symplectic and multisymplectic algorithms. We will show that either Hamiltonian schemes or Lagrangian ones in both the symplectic and multisymplectic algorithms are variational integrators and their difference discrete symplectic structure-preserving properties can always be established not only in the solution space but also in the function space if and only if the related closed Euler?Lagrange cohomological conditions are satisfied.
文摘In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in both the Lagrangian and Hamiltonian formalisms for discrete mechanics and field theory in the framework of multi-parameter differential approach. In terms of the difference discrete Euler?Lagrange cohomological concepts, we show that the symplectic or multisymplectic geometry and their difference discrete structure-preserving properties can always be established not only in the solution spaces of the discrete Euler?Lagrange or canonical equations derived by the difference discrete variational principle but also in the function space in each case if and only if the relevant closed Euler?Lagrange cohomological conditions are satisfied.
基金supported by the National Natural Science Foundation of China (10772039 and 10632030)the National Basic Research Program of China (973 Program) (2010CB832704)
文摘This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method.