期刊文献+
共找到1,911篇文章
< 1 2 96 >
每页显示 20 50 100
Interleukin 1βreceptor and synaptic dysfunction in recurrent brain infection with Herpes simplex virus type-1
1
作者 Roberto Piacentini Claudio Grassi 《Neural Regeneration Research》 SCIE CAS 2025年第2期416-423,共8页
Several experimental evidence suggests a link between brain Herpes simplex virus type-1 infection and the occurrence of Alzheimer’s disease.However,the molecular mechanisms underlying this association are not complet... Several experimental evidence suggests a link between brain Herpes simplex virus type-1 infection and the occurrence of Alzheimer’s disease.However,the molecular mechanisms underlying this association are not completely understood.Among the molecular mediators of synaptic and cognitive dysfunction occurring after Herpes simplex virus type-1 infection and reactivation in the brain neuroinflammatory cytokines seem to occupy a central role.Here,we specifically reviewed literature reports dealing with the impact of neuroinflammation on synaptic dysfunction observed after recurrent Herpes simplex virus type-1 reactivation in the brain,highlighting the role of interleukins and,in particular,interleukin 1βas a possible target against Herpes simplex virus type-1-induced neuronal dysfunctions. 展开更多
关键词 herpes simplex virus type 1 interleukin MICROGLIA NEUROINFLAMMATION synaptic dysfunction
下载PDF
The emerging role of nitric oxide in the synaptic dysfunction of vascular dementia
2
作者 Xiaorong Zhang Zhiying Chen +3 位作者 Yinyi Xiong Qin Zhou Ling-Qiang Zhu Dan Liu 《Neural Regeneration Research》 SCIE CAS 2025年第2期402-415,共14页
With an increase in global aging,the number of people affected by cerebrovascular diseases is also increasing,and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic... With an increase in global aging,the number of people affected by cerebrovascular diseases is also increasing,and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate.However,few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients.Similarly in Alzheimer’s disease and other neurological disorders,synaptic dysfunction is recognized as the main reason for cognitive decline.Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system.Recently,nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia.This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction,neuroinflammation,oxidative stress,and blood-brain barrier dysfunction that underlie the progress of vascular dementia.Additionally,we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia. 展开更多
关键词 endoplasmic reticulum stress endothelial nitric oxide synthase gene therapy nitric oxide NO-sGC-cGMP pathway synaptic dysfunction vascular dementia
下载PDF
Repetitive transcranial magnetic stimulation in Alzheimer’s disease:effects on neural and synaptic rehabilitation
3
作者 Yi Ji Chaoyi Yang +7 位作者 Xuerui Pang Yibing Yan Yue Wu Zhi Geng Wenjie Hu Panpan Hu Xingqi Wu Kai Wang 《Neural Regeneration Research》 SCIE CAS 2025年第2期326-342,共17页
Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neur... Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life,leaving patients incapacitated.Repetitive transcranial magnetic stimulation is a cost-effective,neuro-modulatory technique used for multiple neurological conditions.Over the past two decades,it has been widely used to predict cognitive decline;identify pathophysiological markers;promote neuroplasticity;and assess brain excitability,plasticity,and connectivity.It has also been applied to patients with dementia,because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult.However,its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies.This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment,evaluate its effects on synaptic plasticity,and identify the associated mechanisms.This review essentially focuses on changes in the pathology,amyloidogenesis,and clearance pathways,given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer’s disease.Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription,which are closely related to the neural regeneration process,are also highlighted.Finally,we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation,with the aim to highlight future directions for better clinical translations. 展开更多
关键词 Alzheimer’s disease amyloid deposition apoptotic mechanisms BIOMARKER neural regeneration NEURODEGENERATION repetitive transcranial magnetic stimulation synaptic plasticity
下载PDF
Dysfunction of synaptic endocytic trafficking in Parkinson's disease 被引量:1
4
作者 Xin Yi Ng Mian Cao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2649-2660,共12页
Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of t... Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive.Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease.Notably,several of these genes are linked to the synaptic vesicle recycling process,particularly the clathrinmediated endocytosis pathway.This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease,followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a"dying back"mechanism.Recently,several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized.These models faithfully recapitulate certain Parkinson's disease-like features at the animal,circuit,and cellular levels,and exhibit defects in synaptic membrane trafficking,further supporting the findings from human genetics and clinical studies.In this review,we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins:auxilin(DNAJC6/PARK19)and synaptojanin 1(SYNJ1/PARK20).The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect.Subsequently,we will delve into the involvement of several clathrin-mediated endocytosis-related proteins(GAK,endophilin A1,SAC2/INPP5 F,synaptotagmin-11),identified as Parkinson's disease risk factors through genome-wide association studies,in Parkinson's disease pathogenesis.We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins(alpha-synuclein(PARK1/4),Parkin(PARK2),and LRRK2(PARK8))in synaptic endocytic trafficking.Additionally,we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways,particularly autophagy.Given that synaptic dysfunction is considered as an early event in Parkinson's disease,a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel to rgets for early diagnosis and the development of interventional therapies for Parkinson's disease.Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease. 展开更多
关键词 AUTOPHAGY auxilin/PARK19 clathrin-mediated endocytosis dopamine neurons NEURODEGENERATION nigrostriatal pathway Parkinson's disease synaptic vesicle recycling synaptojanin1/PARK20
下载PDF
Molecular mechanisms underlying microglial sensing and phagocytosis in synaptic pruning 被引量:2
5
作者 Anran Huo Jiali Wang +6 位作者 Qi Li Mengqi Li Yuwan Qi Qiao Yin Weifeng Luo Jijun Shi Qifei Cong 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1284-1290,共7页
Microglia are the main non-neuronal cells in the central nervous system that have important roles in brain development and functional connectivity of neural circuits.In brain physiology,highly dynamic microglial proce... Microglia are the main non-neuronal cells in the central nervous system that have important roles in brain development and functional connectivity of neural circuits.In brain physiology,highly dynamic microglial processes are facilitated to sense the surrounding environment and stimuli.Once the brain switches its functional states,microglia are recruited to specific sites to exert their immune functions,including the release of cytokines and phagocytosis of cellular debris.The crosstalk of microglia between neurons,neural stem cells,endothelial cells,oligodendrocytes,and astrocytes contributes to their functions in synapse pruning,neurogenesis,vascularization,myelination,and blood-brain barrier permeability.In this review,we highlight the neuron-derived“find-me,”“eat-me,”and“don't eat-me”molecular signals that drive microglia in response to changes in neuronal activity for synapse refinement during brain development.This review reveals the molecular mechanism of neuron-microglia interaction in synaptic pruning and presents novel ideas for the synaptic pruning of microglia in disease,thereby providing important clues for discovery of target drugs and development of nervous system disease treatment methods targeting synaptic dysfunction. 展开更多
关键词 COMPLEMENT immune signals microglia molecular signal synapse elimination synapse formation synapse refinement synaptic pruning
下载PDF
Altered synaptic currents,mitophagy,mitochondrial dynamics in Alzheimer's disease models and therapeutic potential of Dengzhan Shengmai capsules intervention 被引量:1
6
作者 Binbin Zhao Dongfeng Wei +12 位作者 Qinghua Long Qingjie Chen Fushun Wang Linlin Chen Zefei Li Tong Li Tao Ma Wei Liu Linshuang Wang Caishui Yang Xiaxia Zhang Ping Wang Zhanjun Zhang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第3期348-370,共23页
Emerging research suggests a potential association of progression of Alzheimer's disease(AD)with alterations in synaptic currents and mitochondrial dynamics.However,the specific associations between these patholog... Emerging research suggests a potential association of progression of Alzheimer's disease(AD)with alterations in synaptic currents and mitochondrial dynamics.However,the specific associations between these pathological changes remain unclear.In this study,we utilized Aβ42-induced AD rats and primary neural cells as in vivo and in vitro models.The investigations included behavioural tests,brain magnetic resonance imaging(MRI),liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis,Nissl staining,thioflavin-S staining,enzyme-linked immunosorbent assay,Golgi-Cox staining,transmission electron microscopy(TEM),immunofluorescence staining,proteomics,adenosine triphosphate(ATP)detection,mitochondrial membrane potential(MMP)and reactive oxygen species(ROS)assessment,mitochondrial morphology analysis,electrophysiological studies,Western blotting,and molecular docking.The results revealed changes in synaptic currents,mitophagy,and mitochondrial dynamics in the AD models.Remarkably,intervention with Dengzhan Shengmai(DZSM)capsules emerged as a pivotal element in this investigation.Aβ42-induced synaptic dysfunction was significantly mitigated by DZSM intervention,which notably amplified the frequency and amplitude of synaptic transmission.The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions,including the hippocampal CA3,primary cingular cortex,prelimbic system,and dysgranular insular cortex.DZSM intervention led to increased IDE levels,augmented long-term potential(LTP)amplitude,and enhanced dendritic spine density and length.Moreover,DZSM intervention led to favourable changes in mitochondrial parameters,including ROS expression,MMP and ATP contents,and mitochondrial morphology.In conclusion,our findings delved into the realm of altered synaptic currents,mitophagy,and mitochondrial dynamics in AD,concurrently highlighting the therapeutic potential of DZSM intervention. 展开更多
关键词 Alzheimer's disease synaptic currents MITOPHAGY Mitochondrial fusion and fission Dengzhan Shengmai capsules
下载PDF
3'-Deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome 被引量:1
7
作者 Yize Qi Yao Zhou +8 位作者 Jiyang Li Fangyuan Zhu Gengni Guo Can Wang Man Yu Yijie Wang Tengfei Ma Shanwu Feng Li Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2270-2280,共11页
Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic ... Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3(NLRP3) inflammasome. 3′-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3′-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3′-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3′-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3′-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3′-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3′-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3′-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome. 展开更多
关键词 3′-deoxyadenosin hippocampus long-term potentiation METHAMPHETAMINE NOD-like receptor family pyrin domain containing-3(NLRP3)inflammasome synaptic plasticity
下载PDF
Dynamical behavior of memristor-coupled heterogeneous discrete neural networks with synaptic crosstalk
8
作者 马铭磷 熊康灵 +1 位作者 李志军 贺少波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期545-550,共6页
Synaptic crosstalk is a prevalent phenomenon among neuronal synapses,playing a crucial role in the transmission of neural signals.Therefore,considering synaptic crosstalk behavior and investigating the dynamical behav... Synaptic crosstalk is a prevalent phenomenon among neuronal synapses,playing a crucial role in the transmission of neural signals.Therefore,considering synaptic crosstalk behavior and investigating the dynamical behavior of discrete neural networks are highly necessary.In this paper,we propose a heterogeneous discrete neural network(HDNN)consisting of a three-dimensional KTz discrete neuron and a Chialvo discrete neuron.These two neurons are coupled mutually by two discrete memristors and the synaptic crosstalk is considered.The impact of crosstalk strength on the firing behavior of the HDNN is explored through bifurcation diagrams and Lyapunov exponents.It is observed that the HDNN exhibits different coexisting attractors under varying crosstalk strengths.Furthermore,the influence of different crosstalk strengths on the synchronized firing of the HDNN is investigated,revealing a gradual attainment of phase synchronization between the two discrete neurons as the crosstalk strength decreases. 展开更多
关键词 discrete memristor synaptic crosstalk coexisting attractor phase synchronization
下载PDF
An enriched environment promotes synaptic plasticity and cognitive recovery after permanent middle cerebral artery occlusion in mice 被引量:15
9
作者 Chuan-Jie Wang Yi Wu +2 位作者 Qun Zhang Ke-Wei Yu Yu-Yang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第3期462-469,共8页
Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on syn... Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on synaptic remodeling in a mouse model of chronic cerebral ischemia, produced by subjecting adult male C57 BL/6 mice to permanent left middle cerebral artery occlusion. Three days postoperatively, mice were randomly assigned to the environmental enrichment and standard housing groups. Mice in the standard housing group were housed and fed a standard diet. Mice in the environmental enrichment group were housed in a cage with various toys and fed a standard diet. Then, 28 days postoperatively, spatial learning and memory were tested using the Morris water maze. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 in the hippocampus were analyzed by western blot assay. The number of synapses was evaluated by electron microscopy. In the water maze test, mice in the environmental enrichment group had a shorter escape latency, traveled markedly longer distances, spent more time in the correct quadrant(northeast zone), and had a higher frequency of crossings compared with the standard housing group. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 were substantially upregulated in the hippocampus in the environmental enrichment group compared with the standard housing group. Furthermore, electron microscopy revealed that environmental enrichment increased the number of synapses in the hippocampal CA1 region. Collectively, these findings suggest that environmental enrichment ameliorates the spatial learning and memory impairment induced by permanent middle cerebral artery occlusion. Environmental enrichment in mice with cerebral ischemia likely promotes cognitive recovery by inducing plastic changes in synapses. 展开更多
关键词 nerve REGENERATION environmental enrichment CEREBRAL ischemia COGNITIVE RECOVERY brain PLASTICITY and reorganization synaptic PLASTICITY electron microscopy growth-associated PROTEIN 43 synaptophysin postsynaptic density PROTEIN 95 permanent middle CEREBRAL artery occlusion neural REGENERATION
下载PDF
Abnormal synaptic plasticity and impaired cognition in schizophrenia 被引量:3
10
作者 Xiu-Lin Wu Qiu-Jin Yan Fan Zhu 《World Journal of Psychiatry》 SCIE 2022年第4期541-557,共17页
Schizophrenia(SCZ)is a severe mental illness that affects several brain domains with relation to cognition and behaviour.SCZ symptoms are typically classified into three categories,namely,positive,negative,and cogniti... Schizophrenia(SCZ)is a severe mental illness that affects several brain domains with relation to cognition and behaviour.SCZ symptoms are typically classified into three categories,namely,positive,negative,and cognitive.The etiology of SCZ is thought to be multifactorial and poorly understood.Accumulating evidence has indicated abnormal synaptic plasticity and cognitive impairments in SCZ.Synaptic plasticity is thought to be induced at appropriate synapses during memory formation and has a critical role in the cognitive symptoms of SCZ.Many factors,including synaptic structure changes,aberrant expression of plasticityrelated genes,and abnormal synaptic transmission,may influence synaptic plasticity and play vital roles in SCZ.In this article,we briefly summarize the morphology of the synapse,the neurobiology of synaptic plasticity,and the role of synaptic plasticity,and review potential mechanisms underlying abnormal synaptic plasticity in SCZ.These abnormalities involve dendritic spines,postsynaptic density,and long-term potentiation-like plasticity.We also focus on cognitive dysfunction,which reflects impaired connectivity in SCZ.Additionally,the potential targets for the treatment of SCZ are discussed in this article.Therefore,understanding abnormal synaptic plasticity and impaired cognition in SCZ has an essential role in drug therapy. 展开更多
关键词 SCHIZOPHRENIA synaptic plasticity synaptic structure synaptic transmission Cognitive dysfunction ABNORMALITY
下载PDF
Activities of nicotinic acetylcholine receptors modulate neurotransmission and synaptic architecture 被引量:1
11
作者 Akira Oda Hidekazu Tanaka 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第24期2128-2131,共4页
The cholinergic system is involved in a broad spectrum of brain function, and its failure has been implicated in Alzheimer's disease. Acetylcholine transduces signals through muscarinic and nicotinic acetylcholine re... The cholinergic system is involved in a broad spectrum of brain function, and its failure has been implicated in Alzheimer's disease. Acetylcholine transduces signals through muscarinic and nicotinic acetylcholine receptors, both of which influence synaptic plasticity and cognition. However, the mechanisms that relate the rapid gating of nicotinic acetylcholine receptors to persistent changes in brain function have remained elusive. Recent evidence indicates that nicotinic acetylcholine receptors activities affect synaptic morphology and density, which result in persistent rearrangements of neural connectivity. Further investigations of the relationships between nicotinic acetylcholine receptors and rearrangements of neural circuitry in the central nervous system may help understand the pathogenesis of Alzheimer's disease. 展开更多
关键词 cholinergic system nicotinic acetylcholine receptors (nAChRs) Alzheimer's disease (AD) synaptic transmission synaptic plasticity synaptic morphology dendritic spine remodeling COGNITION
下载PDF
Cranial irradiation impairs intrinsic excitability and synaptic plasticity of hippocampal CA1 pyramidal neurons with implications for cognitive function 被引量:5
12
作者 Min-Yi Wu Wen-Jun Zou +7 位作者 Pei Yu Yuhua Yang Shao-Jian Li Qiang Liu Jiatian Xie Si-Qi Chen Wei-Jye Lin Yamei Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第10期2253-2259,共7页
Radiation therapy is a standard treatment for head and neck tumors.However,patients often exhibit cognitive impairments following radiation therapy.Previous studies have revealed that hippocampal dysfunction,specifica... Radiation therapy is a standard treatment for head and neck tumors.However,patients often exhibit cognitive impairments following radiation therapy.Previous studies have revealed that hippocampal dysfunction,specifically abnormal hippocampal neurogenesis or neuroinflammation,plays a key role in radiation-induced cognitive impairment.However,the long-term effects of radiation with respect to the electrophysiological adaptation of hippocampal neurons remain poorly characterized.We found that mice exhibited cognitive impairment 3 months after undergoing 10 minutes of cranial irradiation at a dose rate of 3 Gy/min.Furthermore,we observed a remarkable reduction in spike firing and excitatory synaptic input,as well as greatly enhanced inhibitory inputs,in hippocampal CA1 pyramidal neurons.Corresponding to the electrophysiological adaptation,we found reduced expression of synaptic plasticity marker VGLUT1 and increased expression of VGAT.Furthermore,in irradiated mice,long-term potentiation in the hippocampus was weakened and GluR1 expression was inhibited.These findings suggest that radiation can impair intrinsic excitability and synaptic plasticity in hippocampal CA1 pyramidal neurons. 展开更多
关键词 GABA-mediated hyperfunction GluR intrinsic excitability long-term potentiation radiation-induced cognitive impairment spontaneous excitatory postsynaptic currents spontaneous inhibitory postsynaptic currents synaptic plasticity type I vesicular glutamate transporter vesicular GABA transporter whole-cell patch clamp recording
下载PDF
Microglia regulation of synaptic plasticity and learning and memory 被引量:35
13
作者 Jessica Cornell Shelbi Salinas +1 位作者 Hou-Yuan Huang Miou Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第4期705-716,共12页
Microglia are the resident macrophages of the central nervous system.Microglia possess varied morphologies and functions.Under normal physiological conditions,microglia mainly exist in a resting state and constantly m... Microglia are the resident macrophages of the central nervous system.Microglia possess varied morphologies and functions.Under normal physiological conditions,microglia mainly exist in a resting state and constantly monitor their microenvironment and survey neuronal and synaptic activity.Through the C1 q,C3 and CR3"Eat Me"and CD47 and SIRPα"Don't Eat Me"complement pathways,as well as other pathways such as CX3 CR1 signaling,resting microglia regulate synaptic pruning,a process crucial for the promotion of synapse formation and the regulation of neuronal activity and synaptic plasticity.By mediating synaptic pruning,resting microglia play an important role in the regulation of experience-dependent plasticity in the barrel cortex and visual cortex after whisker removal or monocular deprivation,and also in the regulation of learning and memory,including the modulation of memory strength,forgetfulness,and memory quality.As a response to brain injury,infection or neuroinflammation,microglia become activated and increase in number.Activated microglia change to an amoeboid shape,migrate to sites of inflammation and secrete proteins such as cytokines,chemokines and reactive oxygen species.These molecules released by microglia can lead to synaptic plasticity and learning and memory deficits associated with aging,Alzheimer's disease,traumatic brain injury,HIV-associated neurocognitive disorder,and other neurological or mental disorders such as autism,depression and post-traumatic stress disorder.With a focus mainly on recently published literature,here we reviewed the studies investigating the role of resting microglia in synaptic plasticity and learning and memory,as well as how activated microglia modulate disease-related plasticity and learning and memory deficits.By summarizing the function of microglia in these processes,we aim to provide an overview of microglia regulation of synaptic plasticity and learning and memory,and to discuss the possibility of microglia manipulation as a therapeutic to ameliorate cognitive deficits associated with aging,Alzheimer's disease,traumatic brain injury,HIV-associated neurocognitive disorder,and mental disorders. 展开更多
关键词 AGING Alzheimer's disease cognitive deficits experience-dependent plasticity learning and memory mental disorders MICROGLIA synaptic plasticity synaptic pruning
下载PDF
Synaptic dysfunction in Alzheimer's disease:the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention 被引量:4
14
作者 Jade Marsh Pavlos Alifragis 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第4期616-623,共8页
The most prevalent form of dementia in the elderly is Alzheimer's disease.A significant contributing factor to the progression of the disease appears to be the progressive accumulation of amyloid-β42(Aβ42),a smal... The most prevalent form of dementia in the elderly is Alzheimer's disease.A significant contributing factor to the progression of the disease appears to be the progressive accumulation of amyloid-β42(Aβ42),a small hydrophobic peptide.Unfortunately,attempts to develop therapies targeting the accumulation of Aβ42 have not been successful to treat or even slow down the disease.It is possible that this failure is an indication that targeting downstream effects rather than the accumulation of the peptide itself might be a more effective approach.The accumulation of Aβ42 seems to affect various aspects of physiological cell functions.In this review,we provide an overview of the evidence that implicates Aβ42 in synaptic dysfunction,with a focus on how it contributes to defects in synaptic vesicle dynamics and neurotransmitter release.We discuss data that provide new insights on the Aβ42 induced pathology of Alzheimer's disease and a more detailed understanding of its contribution to the synaptic deficiencies that are associated with the early stages of the disease.Although the precise mechanisms that trigger synaptic dysfunction are still under investigation,the available data so far has enabled us to put forward a model that could be used as a guide to generate new therapeutic targets for pharmaceutical intervention. 展开更多
关键词 Alzheimer's disease amyloid-β 42 synaptic vesicles synaptic dysfunction neurotransmitter release
下载PDF
Synaptic aging disrupts synaptic morphology and function in cerebellar Purkinje cells 被引量:3
15
作者 Wen-Juan Fan Ming-Chao Yan +3 位作者 Lai Wang Yi-Zheng Sun Jin-Bo Deng Jie-Xin Deng 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第6期1019-1025,共7页
Synapses are key structures in neural networks,and are involved in learning and memory in the central nervous system.Investigating synaptogenesis and synaptic aging is important in understanding neural development and... Synapses are key structures in neural networks,and are involved in learning and memory in the central nervous system.Investigating synaptogenesis and synaptic aging is important in understanding neural development and neural degeneration in diseases such as Alzheimer disease and Parkinson’s disease.Our previous study found that synaptogenesis and synaptic maturation were harmonized with brain development and maturation.However,synaptic damage and loss in the aging cerebellum are not well understood.This study was designed to investigate the occurrence of synaptic aging in the cerebellum by observing the ultrastructural changes of dendritic spines and synapses in cerebellar Purkinje cells of aging mice.Immunocytochemistry,Di I diolistic assays,and transmission electron microscopy were used to visualize the morphological characteristics of synaptic buttons,dendritic spines and synapses of Purkinje cells in mice at various ages.With synaptic aging in the cerebellum,dendritic spines and synaptic buttons were lost,and the synaptic ultrastructure was altered,including a reduction in the number of synaptic vesicles and mitochondria in presynaptic termini and smaller thin specialized zones in pre-and post-synaptic membranes.These findings confirm that synaptic morphology and function is disrupted in aging synapses,which may be an important pathological cause of neurodegenerative diseases. 展开更多
关键词 nerve regeneration AGING CEREBELLUM degenerative disease dendritic spine nerve regeneration mice neurodegenerative diseases Purkinje cells SYNAPSE synaptOGENESIS synaptic ultrastructure neural regeneration
下载PDF
Neuropeptide Y gene transfection inhibits post-epileptic hippocampal synaptic reconstruction 被引量:2
16
作者 Fan Zhang Wenqing Zhao +5 位作者 Wenling Li Changzheng Dong Xinying Zhang Jiang Wu Na Li Chuandong Liang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第17期1597-1605,共9页
Exogenous neuropeptide Y has antiepileptic effects; however, the underlying mechanism and optimal administration method for neuropeptide Y are still unresolved. Previous studies have used intracerebroventricular injec... Exogenous neuropeptide Y has antiepileptic effects; however, the underlying mechanism and optimal administration method for neuropeptide Y are still unresolved. Previous studies have used intracerebroventricular injection of neuropeptide Y into animal models of epilepsy. In this study, a recombinant adeno-associated virus expression vector carrying the neuropeptide Y gene was injected into the lateral ventricle of rats, while the ipsilateral hippocampus was injected with kainic acid to establish the epileptic model. After transfection of neuropeptide Y gene, mossy fiber sprouting in the hippocampal CA3 region of epileptic rats was significantly suppressed, hippocampal synaptophysin (p38) mRNA and protein expression were inhibited, and epileptic seizures were reduced. These experimental findings indicate that a recombinant adeno-associated virus expression vector carrying the neuropeptide Y gene reduces mossy fiber sprouting and inhibits abnormal synaptophysin expression, thereby suppressing post-epileptic synaptic reconstruction. 展开更多
关键词 neural regeneration gene therapy neural plasticity NEURODEGENERATION recombinantadeno-associated virus vector neuropeptide Y epilepsy kainic acid synaptic remodeling mossyfiber sprouting hippocampus synaptOPHYSIN NEUROREGENERATION
下载PDF
Spatiotemporal alterations of presynaptic elements in the retina after high intraocular pressure 被引量:2
17
作者 Jufang Huang Lihong Zhou +4 位作者 Hui Wang Jia Luo Kun Xiong Leping Zeng Dan Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第16期1234-1240,共7页
A rat model of acute high intraocular pressure was established by injecting saline into the anterior chamber of the left eye. Synaptophysin expression was increased in the inner plexiform layer at 2 hours following in... A rat model of acute high intraocular pressure was established by injecting saline into the anterior chamber of the left eye. Synaptophysin expression was increased in the inner plexiform layer at 2 hours following injury, and was widely distributed in the outer plexiform layer at 3-7 days, and then decreased to the normal level at 14 days. This suggests that expression of this presynaptic functional protein experienced spatiotemporal alterations after elevation of intraocular pressure. There was no significant change in the fluorescence intensity and distribution pattern for synapse-associated protein 102 following elevated intraocular pressure. Synapse-associated protein 102 immunoreactivity was confined to the outer plexiform layer, while synaptophysin immunoreactivity spread into the outer plexiform layer and the outer nuclear layer at 3 and 7 days following injury. These alterations in presynaptic elements were not accompanied by changes in postsynaptic components. 展开更多
关键词 synaptOPHYSIN synapse-associated protein 102 synaptic plasticity elevated intraocular pressure RETINA neural regeneration
下载PDF
Repetitive transcranial magnetic stimulation promotes neurological functional recovery in rats with traumatic brain injury by upregulating synaptic plasticity-related proteins 被引量:5
18
作者 Fang-Fang Qian You-Hua He +3 位作者 Xiao-Hui Du Hua-Xiang Lu Ren-Hong He Jian-Zhong Fan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期368-374,共7页
Studies have shown that repetitive transcra nial magnetic stimulation(rTMS)can enhance synaptic plasticity and improve neurological dysfunction.Howeve r,the mechanism through which rTMS can improve moderate traumatic ... Studies have shown that repetitive transcra nial magnetic stimulation(rTMS)can enhance synaptic plasticity and improve neurological dysfunction.Howeve r,the mechanism through which rTMS can improve moderate traumatic brain injury remains poorly understood.In this study,we established rat models of moderate traumatic brain injury using Feeney's weight-dropping method and treated them using rTMS.To help determine the mechanism of action,we measured levels of seve ral impo rtant brain activity-related proteins and their mRNA.On the injured side of the brain,we found that rTMS increased the protein levels and mRNA expression of brain-derived neurotrophic factor,tropomyosin receptor kinase B,N-methyl-D-aspartic acid receptor 1,and phosphorylated cAMP response element binding protein,which are closely associated with the occurrence of long-term potentiation.rTMS also partially reve rsed the loss of synaptophysin after injury and promoted the remodeling of synaptic ultrastructure.These findings suggest that upregulation of synaptic plasticity-related protein expression is the mechanism through which rTMS promotes neurological function recovery after moderate traumatic brain injury. 展开更多
关键词 brain-derived neurotrophic factor moderate traumatic brain injury neurological dysfunction neurological improvement N-methyl-D-aspartic acid receptor repetitive transcranial magnetic stimulation synaptic plasticity synaptOPHYSIN traumatic brain injury TRKB
下载PDF
Regulatory role of sorting nexin 5 in protein stability and vesicular targeting of vesicular acetylcholine transporter to synaptic vesicle-like vesicles in PC12 cells 被引量:2
19
作者 Meihen Sun Xu Han +3 位作者 Fei Chang Hongfei Xu Lesley Colgan Yongjian Liu 《The Journal of Biomedical Research》 CAS CSCD 2021年第5期339-350,共12页
Accurate targeting of vesicular acetylcholine transporter(VAChT)to synaptic vesicles(SVs)is indispensable for efficient cholinergic transmission.Previous studies have suggested that the dileucine motif within the C-te... Accurate targeting of vesicular acetylcholine transporter(VAChT)to synaptic vesicles(SVs)is indispensable for efficient cholinergic transmission.Previous studies have suggested that the dileucine motif within the C-terminus of the transporter is sufficient for its targeting to SVs.However,the cytosolic machinery underlying specific regulation of VAChT trafficking and targeting to SVs is still unclear.Here we used the C-terminus of VAChT as a bait in a yeast two-hybrid screen to identify sorting nexin 5(SNX5)as its novel interacting protein.SNX5 was detected in the SVs enriched LP2 subcellular fraction of rat brain homogenate and showed strong colocalization with VAChT in both brain sections and PC12 cells.Binding assays suggested that the C-terminal domain of VAChT can interact with both BAR and PX domain of SNX5.Depletion of SNX5 enhanced the degradation of VAChT and the process was mediated through the lysosomal pathway.More importantly,we found that,in PC12 cells,the depletion of SNX5 expression significantly decreased the synaptic vesicle-like vesicles(SVLVs)localization of VAChT.Therefore,the results suggest that SNX5 is a novel regulator for both stability and SV targeting of VAChT. 展开更多
关键词 retrograde trafficking vesicular targeting synaptic vesicle-like vesicles synaptic vesicles PC12
下载PDF
Effects of diazepam on glutamatergic synaptic transmission in the hippocampal CA1 area of rats with traumatic brain injury 被引量:1
20
作者 Lei Cao Xiaohua Bie +3 位作者 Su Huo Jubao Du Lin Liu Weiqun Song 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第21期1897-1901,共5页
The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after lfuid percussion injury. Diazepam can inhibit the hy-perexcitability of rat hippocampal ... The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after lfuid percussion injury. Diazepam can inhibit the hy-perexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment signiifcantly increased the slope of input-output curves in rat neurons after lfuid per-cussion injury. Diazepam signiifcantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the lfuid per-cussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area. 展开更多
关键词 nerve regeneration traumatic brain injury fluid percussion injury excitatory synaptic transmission hippocampal CA1 pyramidal neurons paired-pulse facilitation miniature excitatory postsynaptic potential gamma-aminobutyric acid post-traumatic hyperactivity intracellular recording NSFC grant neural regeneration
下载PDF
上一页 1 2 96 下一页 到第
使用帮助 返回顶部