The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficultie...The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficulties in providing social services that meet the required standards, and the prolongation of emergencies. Despite this challenging context, short-term considerations continue to guide their planning and management rather than more integrated, longer-term perspectives, thus preventing viable, sustainable development. Over the years, the design of humanitarian settlements has not been adapted to local contexts and perspectives, nor to the dynamics of urbanization and population growth and data. In addition, the current approach to temporary settlement harms the environment and can strain limited resources. Inefficient land use and ad hoc development models have compounded difficulties and generated new challenges. As a result, living conditions in settlements have deteriorated over the last few decades and continue to pose new challenges. The stakes are such that major shortcomings have emerged along the way, leading to disruption, budget overruns in a context marked by a steady decline in funding. However, some attempts have been made to shift towards more sustainable approaches, but these have mainly focused on vague, sector-oriented themes, failing to consider systematic and integration views. This study is a contribution in addressing these shortcomings by designing a model-driving solution, emphasizing an integrated system conceptualized as a system of systems. This paper proposes a new methodology for designing an integrated and sustainable human settlement model, based on Model-Based Systems Engineering and a Systems Modeling Language to provide valuable insights toward sustainable solutions for displaced populations aligning with the United Nations 2030 agenda for sustainable development.展开更多
Refugee settlements face several challenges in transitioning from a temporary planning approach to more sustainable settlements. This is mainly due to an increase in the number of forcibly displaced people over the la...Refugee settlements face several challenges in transitioning from a temporary planning approach to more sustainable settlements. This is mainly due to an increase in the number of forcibly displaced people over the last few decades, and the difficulties of sustainably providing social services that meet the required standards. The development of refugee settlements assumed that forcibly displaced people would return to their places or countries of origin. Unfortunately, displacement situations are prolonged indefinitely, forcing these people to spend most of their lives in conditions that are often deplorable and substandard, and therefore unsustainable. In most cases, the establishment of refugee settlements is triggered by an emergency caused by an influx of forcibly displaced people, who need to be accommodated urgently and provided with some form of international assistance and protection. This leaves little or no time for proper planning for long-term development as required. In addition, the current approach to temporary settlement harms the environment and can strain limited resources with ad hoc development models that have exacerbated difficulties. As a result, living conditions in refugee settlements have deteriorated over the last few decades and continue to pose challenges as to how best to design, plan, and sustain settlements over time. To contribute to addressing these challenges, this study proposes a new methodology supported by Model-Based Systems Engineering (MBSE) and a Systems Modeling Language (SysML) to develop a typical sustainable human settlement system model, which has functionally and operationally executed using a Systems Engineering (SE) approach. To assess the sustainability capacity of the proposed system, this work applies a matrix of crossed impact multiplication through a case study by conducting a system capacity interdependence analysis (SCIA) using the MICMAC methodology (Cross-impact matrix multiplication applied to classification) to assess the interdependency that exist between the sub-systems categories to deliver services at the system level. The sustainability analysis results based on capacity variables influence and dependency models shows that development activities in the settlement are unstable and, therefore, unsustainable since there is no apparent difference between the influential and dependent data used for the assessment. These results illustrate that an integrated system could improve human settlements’ sustainability and that capacity building in service delivery is beneficial and necessary.展开更多
The article synthesizes and presents the results regarding the stability of positive homogeneous systems that have been researched and published in recent years. Next, we provide a sufficient condition for global expo...The article synthesizes and presents the results regarding the stability of positive homogeneous systems that have been researched and published in recent years. Next, we provide a sufficient condition for global exponential stability in the case of discrete-time positive homogeneous systems with an order less than one with time-varying delays.展开更多
This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal syste...This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.展开更多
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s...Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.展开更多
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a nove...Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.展开更多
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is s...This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is shown that the system can be stabilized by a class of saturated delayed-impulses regardless of the length of input delays. Conversely, when the system is originally stable, it is shown that under some conditions, the system is robust with respect to sufficient small delayed-impulses. Moreover, the design problem of the controller with the goal of obtaining a maximized estimate of the domain of attraction is formulated via a convex optimization problem. Three examples are provided to demonstrate the validity of the main results.展开更多
In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuz...In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.展开更多
This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consens...This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.展开更多
Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle systems.Nucleation and propagation processes are illustrated for pentadisperse and triadisperse particle systems,...Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle systems.Nucleation and propagation processes are illustrated for pentadisperse and triadisperse particle systems,respectively.In these processes,particles involved in the avalanche grow slowly in the early stage and explosively in the later stage,which is clearly different from the continuous and steady growth trend in the monodisperse system.By examining the avalanche propagation,the number growth of particles involved in the avalanche and the slope of the number growth,the initial state can be divided into three stages:T1(nucleation stage),T2(propagation stage),T3(overall avalanche stage).We focus on the characteristics of the avalanche in the T2 stage,and find that propagation distances increase almost linearly in both axial and radial directions in polydisperse systems.We also consider the distribution characteristics of the average coordination number and average velocity for the moving particles.The results support that the polydisperse particle systems are more stable in the T2 stage.展开更多
Quantum discord, one of the famous quantum correlations, has been recently generalized to multipartite systems by Radhakrishnan et al. Here we give analytical solutions of the quantum discord for a family of N-qubit q...Quantum discord, one of the famous quantum correlations, has been recently generalized to multipartite systems by Radhakrishnan et al. Here we give analytical solutions of the quantum discord for a family of N-qubit quantum states. For the bipartite system, we derive a zero quantum discord which will remain unchanged under the phase damping channel. For multiparitite systems, it is found that the quantum discord can be classified into three categories and the quantum discord for odd-partite systems can exhibit freezing under the phase damping channel, while the freezing does not exist in the even-partite systems.展开更多
A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented i...A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.展开更多
This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theor...This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theory, some new conditions for the nonlinear Lurie multi-agent systems reaching bipartite leaderless consensus and bipartite tracking consensus are presented. Compared with the traditional methods, this approach degrades the dimensions of the conditions, eliminates some restrictions of the system matrix, and extends the range of the nonlinear function. Finally, two numerical examples are provided to illustrate the efficiency of our results.展开更多
The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems(CPSs)seamlessly integrate physical processes with advanced digital technologies.However,as industries become increasingly interconnect...The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems(CPSs)seamlessly integrate physical processes with advanced digital technologies.However,as industries become increasingly interconnected and reliant on smart digital technologies,the intersection of physical and cyber domains introduces novel security considerations,endangering the entire industrial ecosystem.The transition towards a more cooperative setting,including humans and machines in Industry 5.0,together with the growing intricacy and interconnection of CPSs,presents distinct and diverse security and privacy challenges.In this regard,this study provides a comprehensive review of security and privacy concerns pertaining to CPSs in the context of Industry 5.0.The review commences by providing an outline of the role of CPSs in Industry 5.0 and then proceeds to conduct a thorough review of the different security risks associated with CPSs in the context of Industry 5.0.Afterward,the study also presents the privacy implications inherent in these systems,particularly in light of the massive data collection and processing required.In addition,the paper delineates potential avenues for future research and provides countermeasures to surmount these challenges.Overall,the study underscores the imperative of adopting comprehensive security and privacy strategies within the context of Industry 5.0.展开更多
The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in...The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a varietyof industries, including access control, law enforcement, surveillance, and internet communication. However,the growing usage of face recognition technology has created serious concerns about data monitoring and userprivacy preferences, especially in context-aware systems. In response to these problems, this study provides a novelframework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain,and distributed computing to solve privacy concerns while maintaining exact face recognition. The framework’spainstaking design and execution strive to strike a compromise between precise face recognition and protectingpersonal data integrity in an increasingly interconnected environment. Using cutting-edge tools like Dlib for faceanalysis,Ray Cluster for distributed computing, and Blockchain for decentralized identity verification, the proposedsystem provides scalable and secure facial analysis while protecting user privacy. The study’s contributions includethe creation of a sustainable and scalable solution for privacy-aware face recognition, the implementation of flexibleprivacy computing approaches based on Blockchain networks, and the demonstration of higher performanceover previous methods. Specifically, the proposed StyleGAN model has an outstanding accuracy rate of 93.84%while processing high-resolution images from the CelebA-HQ dataset, beating other evaluated models such asProgressive GAN 90.27%, CycleGAN 89.80%, and MGAN 80.80%. With improvements in accuracy, speed, andprivacy protection, the framework has great promise for practical use in a variety of fields that need face recognitiontechnology. This study paves the way for future research in privacy-enhanced face recognition systems, emphasizingthe significance of using cutting-edge technology to meet rising privacy issues in digital identity.展开更多
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
A deep understanding of the internal ballistic process and the factors affecting it is of primary importance to efficiently design a gun system and ensure its safe management. One of the main goals of internal ballist...A deep understanding of the internal ballistic process and the factors affecting it is of primary importance to efficiently design a gun system and ensure its safe management. One of the main goals of internal ballistics is to estimate the gas pressure into the combustion chamber and the projectile muzzle velocity in order to use the propellant to its higher efficiency while avoiding over-pressure phenomena. Dealing with the internal ballistic problem is a complex undertaking since it requires handling the interaction between different constituents during a transient time lapse with very steep rise of pressure and temperature. Several approaches have been proposed in the literature, based on different assumptions and techniques. Generally, depending on the used mathematical framework, they can be classified into two categories: computational fluid dynamics-based models and lumped-parameter ones. By focusing on gun systems, this paper offers a review of the main contributions in the field by mentioning their advantages and drawbacks. An insight into the limitations of the currently available modelling strategies is provided,as well as some considerations on the choice of one model over another. Lumped-parameter models, for example, are a good candidate for performing parametric analysis and optimisation processes of gun systems, given their minimum requirements of computer resources. Conversely, CFD-based models have a better capacity to address more sophisticated phenomena like pressure waves and turbulent flow effects. The performed review also reveals that too little attention has been given to small calibre guns since the majority of currently available models are conceived for medium and large calibre gun systems.Similarly, aspects like wear phenomena, bore deformations or projectile-barrel interactions still need to be adequately addressed and our suggestion is to dedicate more effort on it.展开更多
文摘The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficulties in providing social services that meet the required standards, and the prolongation of emergencies. Despite this challenging context, short-term considerations continue to guide their planning and management rather than more integrated, longer-term perspectives, thus preventing viable, sustainable development. Over the years, the design of humanitarian settlements has not been adapted to local contexts and perspectives, nor to the dynamics of urbanization and population growth and data. In addition, the current approach to temporary settlement harms the environment and can strain limited resources. Inefficient land use and ad hoc development models have compounded difficulties and generated new challenges. As a result, living conditions in settlements have deteriorated over the last few decades and continue to pose new challenges. The stakes are such that major shortcomings have emerged along the way, leading to disruption, budget overruns in a context marked by a steady decline in funding. However, some attempts have been made to shift towards more sustainable approaches, but these have mainly focused on vague, sector-oriented themes, failing to consider systematic and integration views. This study is a contribution in addressing these shortcomings by designing a model-driving solution, emphasizing an integrated system conceptualized as a system of systems. This paper proposes a new methodology for designing an integrated and sustainable human settlement model, based on Model-Based Systems Engineering and a Systems Modeling Language to provide valuable insights toward sustainable solutions for displaced populations aligning with the United Nations 2030 agenda for sustainable development.
文摘Refugee settlements face several challenges in transitioning from a temporary planning approach to more sustainable settlements. This is mainly due to an increase in the number of forcibly displaced people over the last few decades, and the difficulties of sustainably providing social services that meet the required standards. The development of refugee settlements assumed that forcibly displaced people would return to their places or countries of origin. Unfortunately, displacement situations are prolonged indefinitely, forcing these people to spend most of their lives in conditions that are often deplorable and substandard, and therefore unsustainable. In most cases, the establishment of refugee settlements is triggered by an emergency caused by an influx of forcibly displaced people, who need to be accommodated urgently and provided with some form of international assistance and protection. This leaves little or no time for proper planning for long-term development as required. In addition, the current approach to temporary settlement harms the environment and can strain limited resources with ad hoc development models that have exacerbated difficulties. As a result, living conditions in refugee settlements have deteriorated over the last few decades and continue to pose challenges as to how best to design, plan, and sustain settlements over time. To contribute to addressing these challenges, this study proposes a new methodology supported by Model-Based Systems Engineering (MBSE) and a Systems Modeling Language (SysML) to develop a typical sustainable human settlement system model, which has functionally and operationally executed using a Systems Engineering (SE) approach. To assess the sustainability capacity of the proposed system, this work applies a matrix of crossed impact multiplication through a case study by conducting a system capacity interdependence analysis (SCIA) using the MICMAC methodology (Cross-impact matrix multiplication applied to classification) to assess the interdependency that exist between the sub-systems categories to deliver services at the system level. The sustainability analysis results based on capacity variables influence and dependency models shows that development activities in the settlement are unstable and, therefore, unsustainable since there is no apparent difference between the influential and dependent data used for the assessment. These results illustrate that an integrated system could improve human settlements’ sustainability and that capacity building in service delivery is beneficial and necessary.
文摘The article synthesizes and presents the results regarding the stability of positive homogeneous systems that have been researched and published in recent years. Next, we provide a sufficient condition for global exponential stability in the case of discrete-time positive homogeneous systems with an order less than one with time-varying delays.
文摘This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.
基金The work is partially supported by Natural Science Foundation of Ningxia(Grant No.AAC03300)National Natural Science Foundation of China(Grant No.61962001)Graduate Innovation Project of North Minzu University(Grant No.YCX23152).
文摘Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
基金the National Key Research and Development Program of China(2021YFF0900800)the National Natural Science Foundation of China(61972276,62206116,62032016)+2 种基金the New Liberal Arts Reform and Practice Project of National Ministry of Education(2021170002)the Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems(20210101)Tianjin University Talent Innovation Reward Program for Literature and Science Graduate Student(C1-2022-010)。
文摘Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金supported by National Natural Science Foundation of China (62173215)Major Basic Research Program of the Natural Science Foundation of Shandong Province in China(ZR2021ZD04, ZR2020ZD24)the Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions (2019KJI008)。
文摘This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is shown that the system can be stabilized by a class of saturated delayed-impulses regardless of the length of input delays. Conversely, when the system is originally stable, it is shown that under some conditions, the system is robust with respect to sufficient small delayed-impulses. Moreover, the design problem of the controller with the goal of obtaining a maximized estimate of the domain of attraction is formulated via a convex optimization problem. Three examples are provided to demonstrate the validity of the main results.
基金CONAHCYTTecnológico Nacional de Mexico/Tijuana Institute of Technology for the support during this research
文摘In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.
基金supported in part by the National Natural Science Foundation of China (NSFC)(61703086, 61773106)the IAPI Fundamental Research Funds (2018ZCX27)
文摘This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.
基金Project supported by the Qingdao National Laboratory for Marine Science and Technology(Grant No.2015ASKJ01)the National Natural Science Foundation of China(Grant Nos.11972212,12072200,and 12002213).
文摘Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle systems.Nucleation and propagation processes are illustrated for pentadisperse and triadisperse particle systems,respectively.In these processes,particles involved in the avalanche grow slowly in the early stage and explosively in the later stage,which is clearly different from the continuous and steady growth trend in the monodisperse system.By examining the avalanche propagation,the number growth of particles involved in the avalanche and the slope of the number growth,the initial state can be divided into three stages:T1(nucleation stage),T2(propagation stage),T3(overall avalanche stage).We focus on the characteristics of the avalanche in the T2 stage,and find that propagation distances increase almost linearly in both axial and radial directions in polydisperse systems.We also consider the distribution characteristics of the average coordination number and average velocity for the moving particles.The results support that the polydisperse particle systems are more stable in the T2 stage.
基金partially supported by the National Natural Science Foundation of China (Grant No. 11601338)。
文摘Quantum discord, one of the famous quantum correlations, has been recently generalized to multipartite systems by Radhakrishnan et al. Here we give analytical solutions of the quantum discord for a family of N-qubit quantum states. For the bipartite system, we derive a zero quantum discord which will remain unchanged under the phase damping channel. For multiparitite systems, it is found that the quantum discord can be classified into three categories and the quantum discord for odd-partite systems can exhibit freezing under the phase damping channel, while the freezing does not exist in the even-partite systems.
基金co-financed by the European Regional Development Fund of the European UnionGreek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,under the call RESEARCH-CREATE-INNOVATE(project code:T1EDK-04429)。
文摘A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.
基金Project supported by the National Natural Science Foundation of China(Grant No.62363005)the Jiangxi Provincial Natural Science Foundation(Grant Nos.20161BAB212032 and 20232BAB202034)the Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant Nos.GJJ202602 and GJJ202601)。
文摘This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theory, some new conditions for the nonlinear Lurie multi-agent systems reaching bipartite leaderless consensus and bipartite tracking consensus are presented. Compared with the traditional methods, this approach degrades the dimensions of the conditions, eliminates some restrictions of the system matrix, and extends the range of the nonlinear function. Finally, two numerical examples are provided to illustrate the efficiency of our results.
文摘The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems(CPSs)seamlessly integrate physical processes with advanced digital technologies.However,as industries become increasingly interconnected and reliant on smart digital technologies,the intersection of physical and cyber domains introduces novel security considerations,endangering the entire industrial ecosystem.The transition towards a more cooperative setting,including humans and machines in Industry 5.0,together with the growing intricacy and interconnection of CPSs,presents distinct and diverse security and privacy challenges.In this regard,this study provides a comprehensive review of security and privacy concerns pertaining to CPSs in the context of Industry 5.0.The review commences by providing an outline of the role of CPSs in Industry 5.0 and then proceeds to conduct a thorough review of the different security risks associated with CPSs in the context of Industry 5.0.Afterward,the study also presents the privacy implications inherent in these systems,particularly in light of the massive data collection and processing required.In addition,the paper delineates potential avenues for future research and provides countermeasures to surmount these challenges.Overall,the study underscores the imperative of adopting comprehensive security and privacy strategies within the context of Industry 5.0.
文摘The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a varietyof industries, including access control, law enforcement, surveillance, and internet communication. However,the growing usage of face recognition technology has created serious concerns about data monitoring and userprivacy preferences, especially in context-aware systems. In response to these problems, this study provides a novelframework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain,and distributed computing to solve privacy concerns while maintaining exact face recognition. The framework’spainstaking design and execution strive to strike a compromise between precise face recognition and protectingpersonal data integrity in an increasingly interconnected environment. Using cutting-edge tools like Dlib for faceanalysis,Ray Cluster for distributed computing, and Blockchain for decentralized identity verification, the proposedsystem provides scalable and secure facial analysis while protecting user privacy. The study’s contributions includethe creation of a sustainable and scalable solution for privacy-aware face recognition, the implementation of flexibleprivacy computing approaches based on Blockchain networks, and the demonstration of higher performanceover previous methods. Specifically, the proposed StyleGAN model has an outstanding accuracy rate of 93.84%while processing high-resolution images from the CelebA-HQ dataset, beating other evaluated models such asProgressive GAN 90.27%, CycleGAN 89.80%, and MGAN 80.80%. With improvements in accuracy, speed, andprivacy protection, the framework has great promise for practical use in a variety of fields that need face recognitiontechnology. This study paves the way for future research in privacy-enhanced face recognition systems, emphasizingthe significance of using cutting-edge technology to meet rising privacy issues in digital identity.
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
基金the support provided by the Royal Higher Institute for Defence (RHID) of the Belgian Defence, which has contributed to the progress of this ongoing research.
文摘A deep understanding of the internal ballistic process and the factors affecting it is of primary importance to efficiently design a gun system and ensure its safe management. One of the main goals of internal ballistics is to estimate the gas pressure into the combustion chamber and the projectile muzzle velocity in order to use the propellant to its higher efficiency while avoiding over-pressure phenomena. Dealing with the internal ballistic problem is a complex undertaking since it requires handling the interaction between different constituents during a transient time lapse with very steep rise of pressure and temperature. Several approaches have been proposed in the literature, based on different assumptions and techniques. Generally, depending on the used mathematical framework, they can be classified into two categories: computational fluid dynamics-based models and lumped-parameter ones. By focusing on gun systems, this paper offers a review of the main contributions in the field by mentioning their advantages and drawbacks. An insight into the limitations of the currently available modelling strategies is provided,as well as some considerations on the choice of one model over another. Lumped-parameter models, for example, are a good candidate for performing parametric analysis and optimisation processes of gun systems, given their minimum requirements of computer resources. Conversely, CFD-based models have a better capacity to address more sophisticated phenomena like pressure waves and turbulent flow effects. The performed review also reveals that too little attention has been given to small calibre guns since the majority of currently available models are conceived for medium and large calibre gun systems.Similarly, aspects like wear phenomena, bore deformations or projectile-barrel interactions still need to be adequately addressed and our suggestion is to dedicate more effort on it.