钠离子电池(sodium-ion batteries,SIBs)具有成本低的潜在优势,有望成为替代锂离子电池(lithium ion batteries,LIBs)的储能设备。为提升钠离子电池的性能,开发出适应钠离子脱嵌的负极材料尤为重要。硫化锑(Sb_(2)S_(3))因其理论比容量...钠离子电池(sodium-ion batteries,SIBs)具有成本低的潜在优势,有望成为替代锂离子电池(lithium ion batteries,LIBs)的储能设备。为提升钠离子电池的性能,开发出适应钠离子脱嵌的负极材料尤为重要。硫化锑(Sb_(2)S_(3))因其理论比容量高被认为是较好的钠离子电池负极材料。本文使用简单水热法将Sb_(2)S_(3)与石墨烯复合,制备Sb_(2)S_(3)/石墨烯复合材料(Sb_(2)S_(3)/Gr)。结果表明:Sb_(2)S_(3)/Gr作为钠离子电池负极时,不仅表现出良好的电导率(3.5×10~(-3)S/cm)和钠离子扩散速率(4.853×10~(-13)cm~2/s),而且在0.5 A/g的电流密度下,首圈库伦效率为76.27%,经150次循环后的比容量稳定在488 m A·h/g,表现出较高的比容量。Sb_(2)S_(3)/Gr复合材料表现出了极大的应用潜力,为高性能钠离子电池负极材料的研发提供了一定的参考价值。展开更多
Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic...Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed.展开更多
文摘钠离子电池(sodium-ion batteries,SIBs)具有成本低的潜在优势,有望成为替代锂离子电池(lithium ion batteries,LIBs)的储能设备。为提升钠离子电池的性能,开发出适应钠离子脱嵌的负极材料尤为重要。硫化锑(Sb_(2)S_(3))因其理论比容量高被认为是较好的钠离子电池负极材料。本文使用简单水热法将Sb_(2)S_(3)与石墨烯复合,制备Sb_(2)S_(3)/石墨烯复合材料(Sb_(2)S_(3)/Gr)。结果表明:Sb_(2)S_(3)/Gr作为钠离子电池负极时,不仅表现出良好的电导率(3.5×10~(-3)S/cm)和钠离子扩散速率(4.853×10~(-13)cm~2/s),而且在0.5 A/g的电流密度下,首圈库伦效率为76.27%,经150次循环后的比容量稳定在488 m A·h/g,表现出较高的比容量。Sb_(2)S_(3)/Gr复合材料表现出了极大的应用潜力,为高性能钠离子电池负极材料的研发提供了一定的参考价值。
基金supported by the National Key Research and Development Program(No.2022YFB4202200)the Fundamental Research Funds for the Central Universities.
文摘Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed.