Transition metal sulfides(TMSs)have been regarded as greatly promising electrode materials for supercapacitors because of abundant redox electroactive sites and outstanding conductivity.Herein,we report a self-support...Transition metal sulfides(TMSs)have been regarded as greatly promising electrode materials for supercapacitors because of abundant redox electroactive sites and outstanding conductivity.Herein,we report a self-supported hierarchical Mn doped Co_(9)S_(8)@Co(OH)_(2) nanosheet arrays on nickel foam(NF)substrate by a one-step metal–organic-framework(MOF)engaged approach and a subsequent sulfurization process.Experimental results reveal that the introduction of manganese endows improved electric conductivity,enlarged electrochemical specific surface area,adjusted electronic structure of Co_(9)S_(8)@Co(OH)_(2) and enhanced interfacial activities as well as facilitated reaction kinetics of electrodes.The optimal Mn doped Co_(9)S_(8)@Co(OH)_(2) electrode exhibits an ultrahigh specific capacitance of 3745 F g^(-1) at 1 A g^(-1)(5.618 F cm^(-2) at 1.5 mA cm^(-2))and sustains 1710 F g^(-1) at 30 A g^(-1)(2.565 F cm^(-2) at 45 mA cm^(-2)),surpassing most reported values on TMSs.Moreover,a battery-type asymmetric supercapacitor(ASC)device is constructed,which delivers high energy density of 50.2 Wh kg^(-1) at power density of 800 W kg^(-1),and outstanding long-term cycling stability(94%capacitance retention after 8000 cycles).The encouraging results might offer an effective strategy to optimize the TMSs for energy-storage devices.展开更多
A single-sweep oscillopolarographic procedure is descrital which allows detethenahon of rateconstants for reachons of oH. For a wide range of compounds, the results fit well with rate constantspreviously obtained with...A single-sweep oscillopolarographic procedure is descrital which allows detethenahon of rateconstants for reachons of oH. For a wide range of compounds, the results fit well with rate constantspreviously obtained with other methods. Rate constants for reactions of six kinds of active compoundscontalned in rheum, a tradihonal Chinese herb, have been deteboned by this method. Rcationmechanism ha5 also been discussed.展开更多
Photoelectrocatalytic seawater splitting is a promising low-cost method to produce green hydrogen in a large scale.The effects of Cl^(-)ions in seawater on the performance of a photoanode have been reported in previou...Photoelectrocatalytic seawater splitting is a promising low-cost method to produce green hydrogen in a large scale.The effects of Cl^(-)ions in seawater on the performance of a photoanode have been reported in previous studies.However,few researches have been done on the roles of Cl^(-)ions in a photocathode.Herein,for the first time,we find that Cl^(-)ions in the electrolyte improve the photocurrent of a Si/In_(2)S_(3) photocathode by 50% at-0.6 V_(RHE).An in-situ X-ray photoelectron spectroscopy(XPS)characterization combined with the time-of-flight secondary-ion mass spectrometry by simulating photoelectrochemical conditions was used to investigate the interface charge transfer mechanism.The results suggest that there is an In_(2)^(+3)S_(3-x)(OH)_(2x)layer on the surface of In_(2)S_(3) in the phosphate buffer solution(PBS)electrolyte,which plays a role as an interface charge transfer mediator in the Si/In_(2)S_(3) photocathode.The In_(2)^(+3)S_(3-x)(OH)_(2x)surface layer becomes In_(2)^(+3)S_(3-x)(Cl)_(2x)in the PBS electrolyte with NaCl and accelerates the charge transfer rate at the In_(2)S_(3)/electrolyte interface.These results offer a new concept of regulating interface charge transfer mediator to enhance the performance of photoelectrocatalytic seawater splitting for hydrogen production.展开更多
Development of efficient non-precious catalysts for seawater electrolysis is of great significance but challenging due to the sluggish kinetics of oxygen evolution reaction(OER)and the impairment of chlorine electroch...Development of efficient non-precious catalysts for seawater electrolysis is of great significance but challenging due to the sluggish kinetics of oxygen evolution reaction(OER)and the impairment of chlorine electrochemistry at anode.Herein,we report a heterostructure of Ni_(3)S_(2)nanoarray with secondary Fe-Ni(OH)_(2)lamellar edges that exposes abundant active sites towards seawater oxidation.The resultant Fe-Ni(OH)_(2)/Ni_(3)S_(2)nanoarray works directly as a free-standing anodic electrode in alkaline artificial seawater.It only requires an overpotential of 269 mV to afford a current density of 10 mA·cm^(-2)and the Tafel slope is as low as 46 m V·dec^(-1).The 27-hour chronopotentiometry operated at high current density of 100 mA·cm^(-2)shows negligible deterioration,suggesting good stability of the Fe-Ni(OH)_(2)/Ni_(3)S_(2)@NF electrode.Faraday efficiency for oxygen evolution is up to〜95%,revealing decent selectivity of the catalyst in saline water.Such desirable catalytic performance could be benefitted from the introduction of Fe activator and the heterostructure that offers massive active and selective sites.The density functional theory(DFT)calculations indicate that the OER has lower theoretical overpotential than Cl_(2) evolution reaction in Fe sites,which is contrary to that of Ni sites.The experimental and theoretical study provides a strong support for the rational design of high-performance Fe-based electrodes for industrial seawater electrolysis.展开更多
As an anticonvulsant,oxcarbazepine(OXC)has attracted considerable attention for its potential threat to aquatic organisms.Density functional theory has been used to study the mechanisms and kinetics of OXC degradation...As an anticonvulsant,oxcarbazepine(OXC)has attracted considerable attention for its potential threat to aquatic organisms.Density functional theory has been used to study the mechanisms and kinetics of OXC degradation initiated by OH radicals in aqueous environment.A total of fourteen OH-addition pathways were investigated,and the addition to the C8 position of the right benzene ringwas themost vulnerable pathway,resulting in the intermediate IM8.The H-abstraction reactions initiated by OH radicalswere also explored,where the extraction site of the methylene group(C14)on the seven-member carbon heterocyclic ring was found to be the optimal path.The calculations show that the total rate constant of OXC with OH radicals is 9.47×10^(9)(mol/L)^(−1)sec^(−1),and the half-life time is 7.32 s at 298 K with the[·OH]of 10^(−11) mol/L.Moreover,the branch ratio values revealed that OH-addition(89.58%)shows more advantageous than H-abstraction(10.42%).To further understand the potential eco-toxicity of OXC and its transformation products to aquatic organisms,acute toxicity and chronic toxicity were evaluated using ECOSAR software.The toxicity assessment revealed that most degradation products such as OXC-2OH,OXC-4OH,OXC-1O-1OOH,and OXC-1OH’are innoxious to fish and daphnia.Conversely,green algae are more sensitive to these compounds.This study can provide an extensive investigation into the degradation of OXC by OH radicals and enrich the understanding of the aquatic oxidation processes of pharmaceuticals and personal care products(PPCPs).展开更多
Zinc ion hybrid supercapacitors(ZHS)have received much attention due to the enhanced potential window range and high specific capacity.However,the appropriate positive materials with high electrochemical performance a...Zinc ion hybrid supercapacitors(ZHS)have received much attention due to the enhanced potential window range and high specific capacity.However,the appropriate positive materials with high electrochemical performance are still a challenge.Herein,NH_(4)^(+)and glycerate anions pre-inserted Mo glycerate(N-MoG)spheres are synthesized and serve as the template to form NH_(4)^(+)intercalated Ni_(3)S_(2)/Ni_(3)O_(2)(OH)_(4)@MoS_(2)core–shell nanoflower(N-NiMo-OS)in-situ grown on nickel foam(NF)(N-NiMo-OS/NF)by sulfurization treatment.Compared with the product using traditional MoG as a template,N-NiMo-OS/NF inheriting a larger core structure from N-MoG delivers enhanced space for ions transport and volume expansion during the energy storage process,together with the synergistic effects of multi-components and the heterostructure,the as-prepared N-NiMo-OS/NF nanoflower exhibits excellent performance for the battery-type hybrid supercapacitors(BHS)and ZHS devices.Notably,the ZHS device delivers superior electrochemical performance to the BHS device,such as a higher specific capacity of 327.5 mAh·g^(−1)at 1 A·g^(−1),a preeminent energy density of 610.6 Wh·kg^(−1)at 1710 W·kg^(−1),long cycle life.The in-situ Raman,ex-situ X-ray photoelectron spectroscopy(XPS),theoretical calculation demonstrate the extra Zn^(2+)insertion/extraction storage mechanism provides enhanced electrochemical performance for ZHS device.Therefore,the dual-ion pre-inserted strategy can be extended for other advanced electrode materials in energy storage fields.展开更多
基金financial support from Natural Science Foundation of Zhejiang Province(LY21B030005)National Natural Science Foundation of China(51702287).
文摘Transition metal sulfides(TMSs)have been regarded as greatly promising electrode materials for supercapacitors because of abundant redox electroactive sites and outstanding conductivity.Herein,we report a self-supported hierarchical Mn doped Co_(9)S_(8)@Co(OH)_(2) nanosheet arrays on nickel foam(NF)substrate by a one-step metal–organic-framework(MOF)engaged approach and a subsequent sulfurization process.Experimental results reveal that the introduction of manganese endows improved electric conductivity,enlarged electrochemical specific surface area,adjusted electronic structure of Co_(9)S_(8)@Co(OH)_(2) and enhanced interfacial activities as well as facilitated reaction kinetics of electrodes.The optimal Mn doped Co_(9)S_(8)@Co(OH)_(2) electrode exhibits an ultrahigh specific capacitance of 3745 F g^(-1) at 1 A g^(-1)(5.618 F cm^(-2) at 1.5 mA cm^(-2))and sustains 1710 F g^(-1) at 30 A g^(-1)(2.565 F cm^(-2) at 45 mA cm^(-2)),surpassing most reported values on TMSs.Moreover,a battery-type asymmetric supercapacitor(ASC)device is constructed,which delivers high energy density of 50.2 Wh kg^(-1) at power density of 800 W kg^(-1),and outstanding long-term cycling stability(94%capacitance retention after 8000 cycles).The encouraging results might offer an effective strategy to optimize the TMSs for energy-storage devices.
文摘A single-sweep oscillopolarographic procedure is descrital which allows detethenahon of rateconstants for reachons of oH. For a wide range of compounds, the results fit well with rate constantspreviously obtained with other methods. Rate constants for reactions of six kinds of active compoundscontalned in rheum, a tradihonal Chinese herb, have been deteboned by this method. Rcationmechanism ha5 also been discussed.
基金supported by the National Natural Science Foundation of China(22279052)the China Postdoctoral Science Foundation(2023M741613)。
文摘Photoelectrocatalytic seawater splitting is a promising low-cost method to produce green hydrogen in a large scale.The effects of Cl^(-)ions in seawater on the performance of a photoanode have been reported in previous studies.However,few researches have been done on the roles of Cl^(-)ions in a photocathode.Herein,for the first time,we find that Cl^(-)ions in the electrolyte improve the photocurrent of a Si/In_(2)S_(3) photocathode by 50% at-0.6 V_(RHE).An in-situ X-ray photoelectron spectroscopy(XPS)characterization combined with the time-of-flight secondary-ion mass spectrometry by simulating photoelectrochemical conditions was used to investigate the interface charge transfer mechanism.The results suggest that there is an In_(2)^(+3)S_(3-x)(OH)_(2x)layer on the surface of In_(2)S_(3) in the phosphate buffer solution(PBS)electrolyte,which plays a role as an interface charge transfer mediator in the Si/In_(2)S_(3) photocathode.The In_(2)^(+3)S_(3-x)(OH)_(2x)surface layer becomes In_(2)^(+3)S_(3-x)(Cl)_(2x)in the PBS electrolyte with NaCl and accelerates the charge transfer rate at the In_(2)S_(3)/electrolyte interface.These results offer a new concept of regulating interface charge transfer mediator to enhance the performance of photoelectrocatalytic seawater splitting for hydrogen production.
基金the National Natural Science Foundation of China(No.91963113).
文摘Development of efficient non-precious catalysts for seawater electrolysis is of great significance but challenging due to the sluggish kinetics of oxygen evolution reaction(OER)and the impairment of chlorine electrochemistry at anode.Herein,we report a heterostructure of Ni_(3)S_(2)nanoarray with secondary Fe-Ni(OH)_(2)lamellar edges that exposes abundant active sites towards seawater oxidation.The resultant Fe-Ni(OH)_(2)/Ni_(3)S_(2)nanoarray works directly as a free-standing anodic electrode in alkaline artificial seawater.It only requires an overpotential of 269 mV to afford a current density of 10 mA·cm^(-2)and the Tafel slope is as low as 46 m V·dec^(-1).The 27-hour chronopotentiometry operated at high current density of 100 mA·cm^(-2)shows negligible deterioration,suggesting good stability of the Fe-Ni(OH)_(2)/Ni_(3)S_(2)@NF electrode.Faraday efficiency for oxygen evolution is up to〜95%,revealing decent selectivity of the catalyst in saline water.Such desirable catalytic performance could be benefitted from the introduction of Fe activator and the heterostructure that offers massive active and selective sites.The density functional theory(DFT)calculations indicate that the OER has lower theoretical overpotential than Cl_(2) evolution reaction in Fe sites,which is contrary to that of Ni sites.The experimental and theoretical study provides a strong support for the rational design of high-performance Fe-based electrodes for industrial seawater electrolysis.
基金This work was supported by the Shandong Provincial Natural Science Foundation of China(No.ZR2021MB039)the National Natural Science Foundation of China(No.21607089)the Shandong Provincial Key Research and Development Program(Major Scientific and Technological Innovation Project)(No.2020CXGC011402).
文摘As an anticonvulsant,oxcarbazepine(OXC)has attracted considerable attention for its potential threat to aquatic organisms.Density functional theory has been used to study the mechanisms and kinetics of OXC degradation initiated by OH radicals in aqueous environment.A total of fourteen OH-addition pathways were investigated,and the addition to the C8 position of the right benzene ringwas themost vulnerable pathway,resulting in the intermediate IM8.The H-abstraction reactions initiated by OH radicalswere also explored,where the extraction site of the methylene group(C14)on the seven-member carbon heterocyclic ring was found to be the optimal path.The calculations show that the total rate constant of OXC with OH radicals is 9.47×10^(9)(mol/L)^(−1)sec^(−1),and the half-life time is 7.32 s at 298 K with the[·OH]of 10^(−11) mol/L.Moreover,the branch ratio values revealed that OH-addition(89.58%)shows more advantageous than H-abstraction(10.42%).To further understand the potential eco-toxicity of OXC and its transformation products to aquatic organisms,acute toxicity and chronic toxicity were evaluated using ECOSAR software.The toxicity assessment revealed that most degradation products such as OXC-2OH,OXC-4OH,OXC-1O-1OOH,and OXC-1OH’are innoxious to fish and daphnia.Conversely,green algae are more sensitive to these compounds.This study can provide an extensive investigation into the degradation of OXC by OH radicals and enrich the understanding of the aquatic oxidation processes of pharmaceuticals and personal care products(PPCPs).
基金the National Natural Science Foundation of China(Nos.21702116,51772162,and 52072197)the 111 Project of China(No.D20017)+5 种基金Shandong Provincial Key Research and Development Program,China(No.2019GSF107087)Qingdao Postdoctoral Sustentation Fund,Youth Innovation and Technology Foundation of Shandong Higher Education Institutions,China(No.2019KJC004)Outstanding Youth Foundation of Shandong Province,China(No.ZR2019JQ14)Taishan Scholar Young Talent Program(No.tsqn201909114)Major Scientific and Technological Innovation Project(No.2019JZZY020405)Major Basic Research Program of Natural Science Foundation of Shandong Province(No.ZR2020ZD09).
文摘Zinc ion hybrid supercapacitors(ZHS)have received much attention due to the enhanced potential window range and high specific capacity.However,the appropriate positive materials with high electrochemical performance are still a challenge.Herein,NH_(4)^(+)and glycerate anions pre-inserted Mo glycerate(N-MoG)spheres are synthesized and serve as the template to form NH_(4)^(+)intercalated Ni_(3)S_(2)/Ni_(3)O_(2)(OH)_(4)@MoS_(2)core–shell nanoflower(N-NiMo-OS)in-situ grown on nickel foam(NF)(N-NiMo-OS/NF)by sulfurization treatment.Compared with the product using traditional MoG as a template,N-NiMo-OS/NF inheriting a larger core structure from N-MoG delivers enhanced space for ions transport and volume expansion during the energy storage process,together with the synergistic effects of multi-components and the heterostructure,the as-prepared N-NiMo-OS/NF nanoflower exhibits excellent performance for the battery-type hybrid supercapacitors(BHS)and ZHS devices.Notably,the ZHS device delivers superior electrochemical performance to the BHS device,such as a higher specific capacity of 327.5 mAh·g^(−1)at 1 A·g^(−1),a preeminent energy density of 610.6 Wh·kg^(−1)at 1710 W·kg^(−1),long cycle life.The in-situ Raman,ex-situ X-ray photoelectron spectroscopy(XPS),theoretical calculation demonstrate the extra Zn^(2+)insertion/extraction storage mechanism provides enhanced electrochemical performance for ZHS device.Therefore,the dual-ion pre-inserted strategy can be extended for other advanced electrode materials in energy storage fields.