期刊文献+
共找到1,588篇文章
< 1 2 80 >
每页显示 20 50 100
采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法 被引量:1
1
作者 黄鹤 黄佳慧 +2 位作者 刘国权 王会峰 高涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期214-226,共13页
针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时... 针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时融合了精英反向化思路,显著提升了鹈鹕优化算法(POA)的收敛趋势和全局寻优能力,提高了寻找FCM最优聚类中心的成功率;利用DEAMPOA结合加权熵法对FCM进行优化,提高鲁棒性的同时增强了搜索精度,得到较好的聚类结果;在8种UCI标准数据集上与4种算法对比进行聚类性能评估实验,验证了所提方法综合性能优越;将所提方法与信息熵融合,并应用在三维点云KITTI数据集简化中。实验结果表明:与包围框简化法、随机采样简化法和特征选择简化法对比,所提方法全局误差简化前后点集之间平均欧式距离(MED)指标分别降低了2.25%、6.93%、5.74%,点云简化效果最优且运行速度满足要求。 展开更多
关键词 C-均值 鹈鹕优化算法 点云简化 信息熵
下载PDF
基于改进模糊C均值聚类与SMO算法的地铁轨道健康状态评价
2
作者 许以凯 杨艺 +2 位作者 张明凯 赵才友 万壮 《铁道标准设计》 北大核心 2024年第11期53-59,共7页
轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该... 轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该模型首先提出包含轨道几何状态和结构状态的综合评价指标体系;其次采用变异系数法计算评价指标的权重系数并代入模糊C均值聚类法,得到各轨道样本的分类结果;在此基础上,再利用序列最小优化算法通过划分数据对轨道健康状态进行评价;最后通过实例分析对该评价模型进行验证并开展研究。研究结果表明,经模型评价的855个轨道单元评价结果中优良比例为94%,预测效果良好,平均误差为5%,进而验证了该模型的指标体系和评价方法的科学性和合理性,并给出了进一步研究优化的方向。本文对各轨道指标统筹综合评价,为地铁轨道工务管理线路质量评价提供一种新思路,使轨道设备管理变得有序可控,减少人力、物力资源的浪费。 展开更多
关键词 地铁 轨道 健康状态评价 变异系数法 模糊C均值 SMO算法
下载PDF
基于自适应近邻信息的模糊C均值聚类算法
3
作者 高云龙 李建鹏 +3 位作者 郑兴莘 邵桂芳 祝青园 曹超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1045-1058,共14页
传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点... 传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点之间相似度的度量,每个数据点都可以看作其他数据点的近邻,但是不同数据点之间的相似度是不同的。将样本点的近邻信息GX和类中心点的近邻信息GV融入基础FCM模型中,为聚类过程提供更多的数据结构信息,用于指导聚类算法中的簇划分过程,以提升算法的稳定性,并提出了3个迭代算法求解本文提出的聚类模型。与其他先进聚类算法对比,在部分基准数据集上聚类性能有10%以上的提升,同时还从参数敏感性、收敛性、消融实验等方面对算法进行评价。实验结果可以充分显示本文提出的聚类算法的可行性与有效性。 展开更多
关键词 模糊C均值 自适应近邻 算法鲁棒性 迭代算法
下载PDF
基于快速鲁棒模糊C有序均值聚类的苗族服饰图像分割算法
4
作者 陈阳 黄成泉 +3 位作者 雷欢 彭家磊 覃小素 周丽华 《毛纺科技》 CAS 北大核心 2024年第8期81-89,共9页
苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础... 苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础上加入了竞争学习的思想,通过构造新的隶属度约束函数,对像素点进行更加强制清晰的划分,提高图像像素定位的准确性,从而加快算法的收敛速度。结果表明,本文算法在图像分割过程中能有效地降低异常值的影响,获得更加准确的分割结果。该算法在Jaccard相似系数、分割精度、Dice相似系数、模糊划分系数及模糊划分熵等性能方面均优于其他几种模糊C均值(Fuzzy C-Means,FCM)算法,且分割时间与迭代次数也优于FCOM算法。 展开更多
关键词 苗族图像分割 算法 模糊C有序均值 竞争学习 鲁棒性
下载PDF
K-均值算法的初始化改进与聚类质量评估
5
作者 何选森 何帆 于海澜 《西安工程大学学报》 CAS 2024年第6期114-123,共10页
为解决K-均值算法随机初始化的问题,提出了相应的改进方案。通过特征标准化和主成分分析(principal component analysis, PCA)实现数据降维;以最远质心和最小-最大距离规则确定算法的初始质心。为获得数据固有的聚类数量,采用经验法则... 为解决K-均值算法随机初始化的问题,提出了相应的改进方案。通过特征标准化和主成分分析(principal component analysis, PCA)实现数据降维;以最远质心和最小-最大距离规则确定算法的初始质心。为获得数据固有的聚类数量,采用经验法则和肘部法,并用轮廓分析评价聚类质量。仿真结果表明:其他算法平均的λ检验统计量是本方案的2.72倍,而且改进后的聚类误差下降了6.04%。 展开更多
关键词 K-均值算法 主成分分析 最远质心选择 最小-最大距离规则 经验法则 肘部法 轮廓分析
下载PDF
基于高斯核函数的差分隐私模糊C均值聚类算法的构建与应用
6
作者 曹自雄 陈宇鲜 蒋秀梅 《中国医学装备》 2024年第8期106-112,共7页
目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最... 目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最大距离法确定初始中心点,使用聚类中心点的高斯值计算隐私预算分配比率,并添加拉普拉斯噪声以完成差分隐私保护,构建DPFCM_GF。收集整理美国加州大学欧文分校机器学习存储库的心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集对DPFCM_GF有效性进行验证,收集2019年1月1日至2022年12月31日淮安市第二人民医院收治的756例胃癌和肺癌患者病例数据集,对DPFCM_GF的可用性进行验证,并将分析结果与模糊C均值聚类算法(FCM)以及差分隐私模糊C均值聚类算法(DPFCM)进行对比分析。结果:对于心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集,DPFCM_GF和DPFCM的最优聚类效果与FCM聚类效果相当;相较于DPFCM,DPFCM_GF迭代时间更快,聚集速度显著,差异有统计学意义(t=4.01、4.71、4.01、12.38,P<0.05)。对于肺癌和胃癌数据集,随着隐私预算ε的增大,DPFCM_GF正确识别率逐渐聚集于91.9%和93.9%,受试者工作特征(ROC)曲线下面积(AUC)值分别为0.79和0.81;当隐私函数ε为0.1、0.5、1和2(ε<3)时,DPFCM_GF聚类效果显著优于DPFCM,且聚类效果更佳,差异有统计学意义(χ^(2)=12.25、87.12、68.58、7.76,P<0.05;χ^(2)=4.74、43.51、42.47、4.89,P<0.05)。结论:DPFCM_GF是一种有效保护医疗数据隐私的方法,同时也可进行数据分析和挖掘任务,具有一定的研究意义和研究前景。 展开更多
关键词 数据隐私 差分隐私 模糊C均值算法 高斯核函数 数据挖掘 隐私预算
下载PDF
基于改进K均值聚类算法的侦察数据分选方法研究
7
作者 胡华强 王喜 《软件》 2024年第9期4-6,共3页
由于电磁环境的复杂性,对侦察数据的分选是目标准确识别的前提,传统的基于信号特征的分选方法计算量大、分选结果不可靠,采用K均值聚类算法时,初始值的选择是难题。为改进K均值聚类算法,采用模拟退火和遗传算法相结合的方法对初始值和... 由于电磁环境的复杂性,对侦察数据的分选是目标准确识别的前提,传统的基于信号特征的分选方法计算量大、分选结果不可靠,采用K均值聚类算法时,初始值的选择是难题。为改进K均值聚类算法,采用模拟退火和遗传算法相结合的方法对初始值和聚类中心进行动态更新,仿真和试验结果表明分选结果准确可靠。 展开更多
关键词 K均值 算法 信号分选
下载PDF
基于模糊C-均值聚类算法的动态等值研究
8
作者 杨濛濛 《中国设备工程》 2024年第1期97-98,共2页
近年来,随着特高压交直流输电线路的不断建立,需要准确地模拟交直流大电网故障期间的暂态特性已十分困难。电磁暂态仿真计算结果较为准确,但计算量太大,因此需要在计算前对被仿真网络进行动态等值。本文首先介绍了模糊C-均值聚类算法(F... 近年来,随着特高压交直流输电线路的不断建立,需要准确地模拟交直流大电网故障期间的暂态特性已十分困难。电磁暂态仿真计算结果较为准确,但计算量太大,因此需要在计算前对被仿真网络进行动态等值。本文首先介绍了模糊C-均值聚类算法(FCM)及基于物理等效的动态等值计算方法;然后,提出了基于模糊C-均值聚类算法的动态等值计算方法及其流程图。最后,对某区域进行FCM机组分群,并进行动态等值计算,结果表明,采用基于FCM的动态等值方法,等值前后的动态特性基本一致,该方法具有良好的实用性。 展开更多
关键词 模糊C-均值算法 动态等值 参数
下载PDF
基于模糊C均值聚类算法的浆液循环泵节能运行优化方法研究
9
作者 闫庚 《自动化应用》 2024年第14期175-177,共3页
在浆液循环泵运行阶段,受客观应用需求波动的影响,其功耗相对较高。为此,提出基于模糊C均值聚类算法的浆液循环泵节能运行优化方法。在浆液循环泵运行数据特征提取阶段,采用基于无监督的深度学习模型,借助随机初始化的卷积核,对输入的... 在浆液循环泵运行阶段,受客观应用需求波动的影响,其功耗相对较高。为此,提出基于模糊C均值聚类算法的浆液循环泵节能运行优化方法。在浆液循环泵运行数据特征提取阶段,采用基于无监督的深度学习模型,借助随机初始化的卷积核,对输入的数据进行卷积计算,获取低维空间的特征映射,随后通过反卷积确定浆液循环泵运行参数特征;在节能运行优化阶段,引入模糊C均值聚类算法,通过聚类具有相同特征的数据,将相同聚类内功耗最小的参数作为同类运行工况下的优化结果。结果显示,测试循环泵的功耗虽然会随着通过的最大颗粒粒度的增加而呈稳定增大的趋势,但对应的增幅较小,与对照组相比,其分别在节能程度和节能适应性方面表现出了明显优势。 展开更多
关键词 模糊C均值算法 浆液循环泵 深度学习模型 特征提取
下载PDF
基于机器学习的茶树DNA聚类算法
10
作者 杨小平 倪萍 +4 位作者 诸葛天秋 罗跃新 郭春雨 庞月兰 吴雨婷 《广西大学学报(自然科学版)》 CAS 北大核心 2024年第2期386-399,共14页
为了研究茶树基因序列的聚类问题,设计一种基于累计方差贡献率进行改进的核主成分分析(KPCA)与k均值(k-means)++聚类算法相结合的降维聚类算法(KPCA-k-means++)。将基因库数据集筛选分组后,利用k-mers算法提取基因数据的数据特征,根据... 为了研究茶树基因序列的聚类问题,设计一种基于累计方差贡献率进行改进的核主成分分析(KPCA)与k均值(k-means)++聚类算法相结合的降维聚类算法(KPCA-k-means++)。将基因库数据集筛选分组后,利用k-mers算法提取基因数据的数据特征,根据累计方差贡献率的占比大于85%的标准确定降维主元个数对KPCA进行降维改进并采用k-means++算法对降维后数据聚类,通过CH(Calinski-Harabaze Index)指标和响应时间分析聚类结果。结果表明:在单独聚类、KPCA聚类、改进PCA聚类、改进KPCA聚类4种处理方式中,改进KPCA-k-means++算法在不同处理方式和不同样本数的对比下,CH指标均为最高,与未改进时相比平均高出33%。在响应时间方面,改进KPCA-k-means++算法与同样改进PCA-k-means++算法在不同聚类数和样本数的对比下响应时间均较短。改进KPCA-k-means++算法能够保证对于茶树的基因序列的聚类准确率和聚类速度,表现出极好的聚类稳定性。 展开更多
关键词 核主成分分析 累计方差贡献率 K均值算法 基因
下载PDF
融合密度和划分的文本聚类算法
11
作者 刘龙 刘新 +1 位作者 蔡林杰 唐朝 《计算机与数字工程》 2024年第1期178-183,共6页
文档聚类是聚类的经典应用,它是将相似的文档归为同一类,可以有效地组织、摘要和导航文本信息,也可以用来提高分类效果。论文使用BERT模型处理文档向量化,将文档表示为高维向量。传统的密度聚类算法不适用于高维数据集,划分聚类算法中... 文档聚类是聚类的经典应用,它是将相似的文档归为同一类,可以有效地组织、摘要和导航文本信息,也可以用来提高分类效果。论文使用BERT模型处理文档向量化,将文档表示为高维向量。传统的密度聚类算法不适用于高维数据集,划分聚类算法中的K-均值算法可以有效地聚类文档,但是算法的性能非常依赖于初始中心点的选择。论文提出了一种新的融合密度和划分的文本聚类算法。首先,通过密度选择适当的聚类中心点集合,然后使用最远距离的想法逐渐选择初始类中心点,最后使用划分方法对数据集进行聚类。实验表明,该算法的聚类效果稳定,聚类效果良好。 展开更多
关键词 文档 BERT K-均值算法 密度 最远距离
下载PDF
基于改进人工蜂群算法的K均值聚类算法 被引量:50
12
作者 喻金平 郑杰 梅宏标 《计算机应用》 CSCD 北大核心 2014年第4期1065-1069,1088,共6页
针对K均值聚类(KMC)算法全局搜索能力差、初始聚类中心选择敏感,以及原始人工蜂群(ABC)算法的初始化随机性、易早熟、后期收敛速度慢等问题,提出了一种改进人工蜂群算法(IABC)。该算法利用最大最小距离积方法初始化蜂群,构造出适应KMC... 针对K均值聚类(KMC)算法全局搜索能力差、初始聚类中心选择敏感,以及原始人工蜂群(ABC)算法的初始化随机性、易早熟、后期收敛速度慢等问题,提出了一种改进人工蜂群算法(IABC)。该算法利用最大最小距离积方法初始化蜂群,构造出适应KMC算法的适应度函数以及一种基于全局引导的位置更新公式以提高迭代寻优过程的效率。将改进的人工蜂群算法与KMC算法结合提出IABC-Kmeans算法以改善聚类性能。通过Sphere、Rastrigin、Rosenbrock和Griewank四个标准测试函数和UCI标准数据集上进行测试的仿真实验表明,IABC算法收敛速度快,克服了原始算法易陷入局部最优解的缺点;IABC-Kmeans算法则具有更好的聚类质量和综合性能。 展开更多
关键词 人工蜂群算法 K均值算法 适应度函数 位置更新公式
下载PDF
基于粒子群优化算法的模糊C-均值聚类 被引量:27
13
作者 张利彪 周春光 +2 位作者 马铭 刘小华 孙彩堂 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2006年第2期217-222,共6页
利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小... 利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小的缺陷;同时也降低了FCM算法对初始值的敏感度.实验结果表明,与FCM相比本文算法聚类更为准确,效率更高. 展开更多
关键词 粒子群优化算法 模糊 模糊C-均值算法
下载PDF
基于EEMD和模糊C均值聚类算法诊断发动机曲轴轴承故障 被引量:35
14
作者 张玲玲 廖红云 +2 位作者 曹亚娟 骆诗定 赵懿冠 《内燃机学报》 EI CAS CSCD 北大核心 2011年第4期332-336,共5页
针对发动机振动信号的非平稳性以及特征参数的模糊性特点,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和模糊C均值聚类(Fuzzy Center Mean,FCM)的故障诊断方法,通过对已知故障样本信号进行EEMD分解,... 针对发动机振动信号的非平稳性以及特征参数的模糊性特点,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和模糊C均值聚类(Fuzzy Center Mean,FCM)的故障诊断方法,通过对已知故障样本信号进行EEMD分解,形成初始特征向量矩阵;对该矩阵进行奇异值分解,将矩阵的奇异值组成故障特征向量,标准化后作为FCM的输入,得到分类矩阵和聚类中心;最后通过计算待测故障样本与已知故障样本聚类中心的贴近度实现故障模式识别.故障诊断实例表明,该方法能有效地诊断柴油机曲轴轴承故障. 展开更多
关键词 模糊C均值算法 奇异值分解 经验模式分解 故障诊断 曲轴轴承
下载PDF
一种半监督K均值多关系数据聚类算法 被引量:22
15
作者 高滢 刘大有 +1 位作者 齐红 刘赫 《软件学报》 EI CSCD 北大核心 2008年第11期2814-2821,共8页
提出了一种半监督K均值多关系数据聚类算法.该算法在K均值聚类算法的基础上扩展了其初始类簇的选择方法和对象相似性度量方法,以用于多关系数据的半监督学习.为了获取高性能,该算法在聚类过程中充分利用了标记数据、对象属性及各种关系... 提出了一种半监督K均值多关系数据聚类算法.该算法在K均值聚类算法的基础上扩展了其初始类簇的选择方法和对象相似性度量方法,以用于多关系数据的半监督学习.为了获取高性能,该算法在聚类过程中充分利用了标记数据、对象属性及各种关系信息.多关系数据库Movie上的实验结果验证了该算法的有效性. 展开更多
关键词 数据挖掘 半监督学习 算法 多关系数据 K均值
下载PDF
基于遗传算法的K均值聚类分析 被引量:72
16
作者 赖玉霞 刘建平 杨国兴 《计算机工程》 CAS CSCD 北大核心 2008年第20期200-202,共3页
传统K均值算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动,容易陷入局部最优值。针对上述问题,该文提出一种基于遗传算法的K均值聚类算法,将K均值算法的局部寻优能力与遗传算法的全局寻优能力相结合,在自适应交叉概率和变异概... 传统K均值算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动,容易陷入局部最优值。针对上述问题,该文提出一种基于遗传算法的K均值聚类算法,将K均值算法的局部寻优能力与遗传算法的全局寻优能力相结合,在自适应交叉概率和变异概率的遗传算法中引入K均值操作,以克服传统K均值算法的局部性和对初始中心的敏感性,实验证明,该算法有较好的全局收敛性,聚类效果更好。 展开更多
关键词 K均值算法 中心 遗传算法
下载PDF
基于遗传算法的岩体结构面的模糊C均值聚类方法 被引量:38
17
作者 蔡美峰 王鹏 +1 位作者 赵奎 张登科 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2005年第3期371-376,共6页
提出了一种基于遗传算法的岩体结构面模糊C均值聚类方法,避免了人为划定分类界限的主观性,解决了模糊C均值聚类算法的局部最优的弱点。同时结合现场实测数据,对应用该方法进行结构面产状分类的具体步骤、参数选取、分组有效性和优势方... 提出了一种基于遗传算法的岩体结构面模糊C均值聚类方法,避免了人为划定分类界限的主观性,解决了模糊C均值聚类算法的局部最优的弱点。同时结合现场实测数据,对应用该方法进行结构面产状分类的具体步骤、参数选取、分组有效性和优势方位判定进行了分析和讨论。 展开更多
关键词 岩石力学 岩体 结构面 模糊C均值 遗传算法
下载PDF
逐级均值聚类算法的RBFN模型在负荷预测中的应用 被引量:42
18
作者 刘小华 刘沛 +1 位作者 张步涵 万建平 《中国电机工程学报》 EI CSCD 北大核心 2004年第2期17-21,共5页
该文针对传统K均值聚类算法的不足,提出了一种新的聚类算法——逐级均值聚类算法,解决了传统聚类算法解的局部最优性问题和如何确定聚类数目的问题。在应用该算法确定RBF模型隐含层的中心向量时,同时确定了隐含层的节点数和RBF网络模型... 该文针对传统K均值聚类算法的不足,提出了一种新的聚类算法——逐级均值聚类算法,解决了传统聚类算法解的局部最优性问题和如何确定聚类数目的问题。在应用该算法确定RBF模型隐含层的中心向量时,同时确定了隐含层的节点数和RBF网络模型的结构。对于网络参数的确定,文中也提出了一种新的交互式的学习方案,将学习样本分为训练样本和测试样本,分别对网络进行权值确定和半径调节,得到了非常稳定的网络结构。运用文中所述模型及算法与传统的RBFN进行负荷预测比较,结果表明前者网络更稳定,预测精度更高。 展开更多
关键词 电力系统 负荷预测 RBFN模型 逐级均值算法 非线性函数
下载PDF
基于人工鱼群算法和模糊C-均值聚类的洪水分类方法 被引量:30
19
作者 汪丽娜 陈晓宏 +1 位作者 李粤安 林凯荣 《水利学报》 EI CSCD 北大核心 2009年第6期743-748,755,共7页
为了克服模糊C-均值聚类(FCM)算法依赖初值的缺点,引入人工鱼群算法(AFS)建立一种新的聚类算法,应用于洪水分类研究。该算法将聚类中心看作食物源,通过样本抽样产生初始鱼群,利用人工鱼群算法能全局寻优和快速收敛的特点,得到一个较优... 为了克服模糊C-均值聚类(FCM)算法依赖初值的缺点,引入人工鱼群算法(AFS)建立一种新的聚类算法,应用于洪水分类研究。该算法将聚类中心看作食物源,通过样本抽样产生初始鱼群,利用人工鱼群算法能全局寻优和快速收敛的特点,得到一个较优的初始聚类结果,再使用FCM算法进行局部搜索,以避免因初值选取不当,而有可能陷入局部最小的缺陷。该方法应用于对西江流域洪水资料的分析结果表明,新算法具有比FCM算法更好的性能表现,使得到的分类结果更加准确合理。 展开更多
关键词 人工鱼群算法 模糊C-均值算法 洪水分
下载PDF
基于微粒群优化聚类数目的K-均值算法 被引量:19
20
作者 巩敦卫 蒋余庆 +1 位作者 张勇 周勇 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第10期1175-1179,共5页
K-均值算法是广泛使用的聚类算法,但该算法的聚类数目难以确定,且聚类结果对初始聚类中心比较敏感.本文提出一种基于微粒群优化聚类数目的K-均值算法,该算法采用聚类中心的坐标和通配符表示微粒位置,通过定义微粒更新公式中新的加减运算... K-均值算法是广泛使用的聚类算法,但该算法的聚类数目难以确定,且聚类结果对初始聚类中心比较敏感.本文提出一种基于微粒群优化聚类数目的K-均值算法,该算法采用聚类中心的坐标和通配符表示微粒位置,通过定义微粒更新公式中新的加减运算符,动态调整聚类中心的数目及坐标,此外,以改进的聚类有效性指标Davies-Bouldin准则作为适应度函数.5个人工和真实数据集的聚类结果验证了所提算法的优越性. 展开更多
关键词 K-均值算法 微粒群优化 微粒更新
下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部