The failure modes and effects analysis (FMEA) is widely applied in manufacturing industries in various phases of the product life cycle to evaluate the system, its design and processes for failures that can occur. T...The failure modes and effects analysis (FMEA) is widely applied in manufacturing industries in various phases of the product life cycle to evaluate the system, its design and processes for failures that can occur. The FMEA team often demonstrates different opinions and these different types of opinions are very difficult to incorporate into the FMEA by the traditional risk priority number model. In this paper, for each of the Occurrence, Severity and Detectivity parameters a fuzzy set is defined and the opinion of each FMEA team members is considered. These opinions are considered simultaneously with weights that are given to each individual based on their skills and experience levels. In addition, the opinion of the costumer is considered for each of the FMEA parameters. Then, the Risk Priority Numbers (RPN) is calculated using a Multi Input Single Output (MISO) fuzzy expert system. The proposed model is applied for prioritizing the failures of Peugeot 206 Engine assembly line in IKCo (Iran Khodro Company).展开更多
The greatest benefit is realized from failure mode, effect and criticality analysis (FMECA) when it is done early in the design phase and tracks product changes as they evolve; design changes can then be made more eco...The greatest benefit is realized from failure mode, effect and criticality analysis (FMECA) when it is done early in the design phase and tracks product changes as they evolve; design changes can then be made more economically than if the problems are discovered after the design has been completed. However, when the discovered design flaws must be prioritized for corrective actions, precise information on their probability of occurrence, the effect of the failure, and their detectability often are not availabe. To solve this problem, this paper described a new method, based on fuzzy sets, for prioritizing failures for corrective actions in a FMCEA. Its successful application to the container crane shows that the proposed method is both reasonable and practical.展开更多
文摘The failure modes and effects analysis (FMEA) is widely applied in manufacturing industries in various phases of the product life cycle to evaluate the system, its design and processes for failures that can occur. The FMEA team often demonstrates different opinions and these different types of opinions are very difficult to incorporate into the FMEA by the traditional risk priority number model. In this paper, for each of the Occurrence, Severity and Detectivity parameters a fuzzy set is defined and the opinion of each FMEA team members is considered. These opinions are considered simultaneously with weights that are given to each individual based on their skills and experience levels. In addition, the opinion of the costumer is considered for each of the FMEA parameters. Then, the Risk Priority Numbers (RPN) is calculated using a Multi Input Single Output (MISO) fuzzy expert system. The proposed model is applied for prioritizing the failures of Peugeot 206 Engine assembly line in IKCo (Iran Khodro Company).
基金National Natural Science Foundation ofChina! under the Contract Number:594 750 4 3
文摘The greatest benefit is realized from failure mode, effect and criticality analysis (FMECA) when it is done early in the design phase and tracks product changes as they evolve; design changes can then be made more economically than if the problems are discovered after the design has been completed. However, when the discovered design flaws must be prioritized for corrective actions, precise information on their probability of occurrence, the effect of the failure, and their detectability often are not availabe. To solve this problem, this paper described a new method, based on fuzzy sets, for prioritizing failures for corrective actions in a FMCEA. Its successful application to the container crane shows that the proposed method is both reasonable and practical.