The combined effects of viscous dissipation and Newtonian heating on bound- ary layer flow over a moving flat plate are investigated for two types of water-based New- tonian nanofluids containing metallic or nonmetall...The combined effects of viscous dissipation and Newtonian heating on bound- ary layer flow over a moving flat plate are investigated for two types of water-based New- tonian nanofluids containing metallic or nonmetallic nanoparticles such as copper (Cu) and titania (Ti02). The governing partial differential equations are transformed into ordinary differential equations through a similarity transformation and are solved numer- ically by a Runge-Kutta-Fehlberg method with a shooting technique. The conclusions are that the heat transfer rate at the moving plate surface increases with the increases in the nanoparticle volume fraction and the Newtonian heating, while it decreases with the increase in the Brinkmann number. Moreover, the heat transfer rate at the moving plate surface with Cu-water as the working nanofiuid is higher than that with TiO2-water.展开更多
文摘The combined effects of viscous dissipation and Newtonian heating on bound- ary layer flow over a moving flat plate are investigated for two types of water-based New- tonian nanofluids containing metallic or nonmetallic nanoparticles such as copper (Cu) and titania (Ti02). The governing partial differential equations are transformed into ordinary differential equations through a similarity transformation and are solved numer- ically by a Runge-Kutta-Fehlberg method with a shooting technique. The conclusions are that the heat transfer rate at the moving plate surface increases with the increases in the nanoparticle volume fraction and the Newtonian heating, while it decreases with the increase in the Brinkmann number. Moreover, the heat transfer rate at the moving plate surface with Cu-water as the working nanofiuid is higher than that with TiO2-water.