The authors have designed and synthesized new chiral salen-type metal (M = Fe, Co, Ni, Cu, Zn) complexes (1-5) for new conceptual dyes (co-sensitizer or colorful multi-dyes) of DSSCs (dye-sensitized solar cells...The authors have designed and synthesized new chiral salen-type metal (M = Fe, Co, Ni, Cu, Zn) complexes (1-5) for new conceptual dyes (co-sensitizer or colorful multi-dyes) of DSSCs (dye-sensitized solar cells). The authors measured substituent effects on their absorption spectra and redox properties, and compared them with TD-DFT (time-dependent density functional theory) calculations. Electron withdrawing groups resulted in red-shift of ultraviolet-visible (UV-Vis) spectra. For the first time, the authors also proposed and confirmed the importance of substituent effects on their electric transition dipole moments, calculated by TD-DFT for designing dyes. Chemisorption for TiO2 of the complex by carboxyl groups was confirmed by XPS measurement. In view of electronic properties, all compounds have the possibility to be dyes of DSSCs.展开更多
基金supported by the National Natural Science Foundation of China(No.21973086,No.22203083)the Ministry of Science and Technology of China(No.2021YFA1200103)the Fundamental Research Funds for the Central Universities(No.WK2060000018)。
文摘The authors have designed and synthesized new chiral salen-type metal (M = Fe, Co, Ni, Cu, Zn) complexes (1-5) for new conceptual dyes (co-sensitizer or colorful multi-dyes) of DSSCs (dye-sensitized solar cells). The authors measured substituent effects on their absorption spectra and redox properties, and compared them with TD-DFT (time-dependent density functional theory) calculations. Electron withdrawing groups resulted in red-shift of ultraviolet-visible (UV-Vis) spectra. For the first time, the authors also proposed and confirmed the importance of substituent effects on their electric transition dipole moments, calculated by TD-DFT for designing dyes. Chemisorption for TiO2 of the complex by carboxyl groups was confirmed by XPS measurement. In view of electronic properties, all compounds have the possibility to be dyes of DSSCs.
基金supported by the National Natural Science Foundation of China(20972015)the Natural Science Foundation of Beijing(Grant2082016)a joint project of Beijing Municipal Education Commission(China)