期刊文献+
共找到956篇文章
< 1 2 48 >
每页显示 20 50 100
Design and Performance Analysis of Permanent Magnet Claw Pole Machine with Hybrid Cores 被引量:1
1
作者 Chengcheng Liu Zheng Chao +1 位作者 Shaopeng Wang Youhua Wang 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第3期275-283,共9页
Permanent magnet claw pole machine(PMCPM) is a special kind of transverse flux permanent magnet machine. Compared with other electrical machines, it has the advantages of high torque density and high efficiency for hi... Permanent magnet claw pole machine(PMCPM) is a special kind of transverse flux permanent magnet machine. Compared with other electrical machines, it has the advantages of high torque density and high efficiency for high speed operation. However, because of its complex irregular structure, the manufacturing process using silicon sheets is complicated. Soft magnetic composite material(SMC) is manufactured by powder metallurgy technology, which can produce various shapes of stator core structures, so it is easier to produce various irregular shapes of the stator core. However, the raw SMC material is relatively expensive, and the mechanical strength of SMC is weak. In this paper, a PMCPM with hybrid cores is proposed. With the adoption of hybrid silicon sheet-SMC cores and amorphous alloy-SMC cores, the torque ability of PMCPM can be improved greatly and it can have higher efficiency for more wide operation frequency. Meanwhile, its mechanical strength has been improved and it can be designed for high torque direct drive applications as it is a modular machine. Furthermore, three methods are proposed to reduce the additional eddy current loss which resulted from the employment of hybrid cores in PMCPM. 展开更多
关键词 permanent magnet claw pole machine(PMCPM) Soft magnetic materials(SMC) Hybrid cores Eddy current loss
下载PDF
Design Optimization of a Novel Axial-radial Flux Permanent Magnet Claw Pole Machine with SMC Cores and Ferrite Magnets
2
作者 Chengcheng Liu Fan Yang +1 位作者 Wenfeng Zhang Youhua Wang 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第4期358-365,共8页
Soft magnetic composite(SMC)material is an ideal soft magnetic material employed for developing 3D magnetic flux electromagnetic equipment,due to its advantages of 3D magnetic isotropy characteristic,low eddy current ... Soft magnetic composite(SMC)material is an ideal soft magnetic material employed for developing 3D magnetic flux electromagnetic equipment,due to its advantages of 3D magnetic isotropy characteristic,low eddy current loss,and simple manufacturing process.The permanent magnet claw pole machine(PMCPM)with SMC cores is a good case that the SMC to be adopted for developing 3D flux electrical machines.In this paper,a novel axial-radial flux permanent magnet claw pole machine(ARPMCPM)with SMC cores and ferrite magnets is proposed.Compared with the traditional PMCPM,the proposed ARPMCPM is designed with only one spoke PM rotor and its whole structure is quite compact.For the performance prediction,the 3D finite element method(FEM)is used.Meanwhile,for the performance evaluation,a previously developed axial flux claw pole permanent magnet machine(AFCPM)is employed as the benchmark machine and all these machines are optimized by using the combined multilevel robust Taguchi method.It can be seen that the proposed ARPMCPM is with higher torque/weight density and operation efficiency. 展开更多
关键词 Soft magnetic composite(SMC) permanent magnetic claw pole machine(PMCPM) Axial-radial flux
下载PDF
Reduction of Cogging Torque and Electromagnetic Vibration Based on Different Combination of Pole Arc Coefficient for Interior Permanent Magnet Synchronous Machine 被引量:8
3
作者 Feng Liu Xiuhe Wang +2 位作者 Zezhi Xing Aiguo Yu Changbin Li 《CES Transactions on Electrical Machines and Systems》 CSCD 2021年第4期291-300,共10页
Cogging torque and electromagnetic vibration are two important factors for evaluating permanent magnet synchronous machine(PMSM)and are key issues that must be considered and resolved in the design and manufacture of ... Cogging torque and electromagnetic vibration are two important factors for evaluating permanent magnet synchronous machine(PMSM)and are key issues that must be considered and resolved in the design and manufacture of high-performance PMSM for electric vehicles.A fast and accurate magnetic field calculation model for interior permanent magnet synchronous machine(IPMSM)is proposed in this article.Based on the traditional magnetic potential permeance method,the stator cogging effect and complex boundary conditions of the IPMSM can be fully considered in this model,so as to realize the rapid calculation of equivalent magnetomotive force(MMF),air gap permeance,and other key electromagnetic properties.In this article,a 6-pole 36-slot IPMSM is taken as an example to establish its equivalent solution model,thereby the cogging torque is accurately calculated.And the validity of this model is verified by a variety of different magnetic pole structures,pole slot combinations machines,and prototype experiments.In addition,the improvement measure of the machine with different combination of pole arc coefficient is also studied based on this model.Cogging torque and electromagnetic vibration can be effectively weakened.Combined with the finite element model and multi-physics coupling model,the electromagnetic characteristics and vibration performance of this machine are comprehensively compared and analyzed.The analysis results have well verified its effectiveness.It can be extended to other structures or types of PMSM and has very important practical value and research significance. 展开更多
关键词 Cogging torque different combination of pole arc coefficient electromagnetic vibration interior permanent magnet synchronous machine
下载PDF
Coupled Electromagnetic-Thermal-Fluidic Analysis of Permanent Magnet Synchronous Machines with a Modified Model 被引量:8
4
作者 Gaojia Zhu Xiaoming Liu +2 位作者 Longnv Li Hai Chen Jianguo Zhu 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第2期204-209,共6页
The researches on the heat generation and dissipa-tion of the permanent magnet synchronous machines(PMSMs)are integrated problems involving multidisciplinary studies of electromagnetism,thermomechanics,and computation... The researches on the heat generation and dissipa-tion of the permanent magnet synchronous machines(PMSMs)are integrated problems involving multidisciplinary studies of electromagnetism,thermomechanics,and computational fluid dynamics.The governing equations of the multi-physical prob-lems are coupled and hard to be solved and illustrated.The high accuracy mathematical model in the algebraically integral con-servative forms of the coupled fields is established and computed in this paper.And the equation coupling with the fluid flow and the temperature variation is modified to improve the positive definiteness and the symmetry of the global stiffness matrix.The computational burden is thus reduced by the model modification.A 20kW 4500rpm permanent magnet synchronous machine(PMSM)is taken as the prototype,and the calculation results are validated by experimental ones. 展开更多
关键词 Cell method(CM) model modification mul-ti-physics coupled problems permanent magnet synchronous machine(PMSM).
下载PDF
Performance analysis of 20 Pole 1.5 KW Three Phase Permanent Magnet Synchronous Generator for low Speed Vertical Axis Wind Turbine 被引量:2
5
作者 Shahrukh Adnan Khan Rajprasad K. Rajkumar +1 位作者 Rajparthiban K. Rajkumar Aravind CV 《Energy and Power Engineering》 2013年第4期423-428,共6页
This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in considerati... This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed. 展开更多
关键词 Vertical Axis WIND TURBINE Three Phase Multi-pole permanent magnet synchronous Generator Low WIND Speed Modeling Performance Analysis
下载PDF
Development and Analysis of the Magnetic Circuit on Double-Radial Permanent Magnet and Salient-Pole Electromagnetic Hybrid Excitation Generator for Vehicles
6
作者 Xueyi Zhang Qinjun Du +2 位作者 Jinbin Xu Yuzhen Zhao Shilun Ma 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第2期100-112,共13页
With the improvement of vehicles electrical equipment, the existing silicon rectification generator and permanent magnet generator cannot meet the requirement of the electric power consumption of the modern vehicles e... With the improvement of vehicles electrical equipment, the existing silicon rectification generator and permanent magnet generator cannot meet the requirement of the electric power consumption of the modern vehicles electrical equipment. It is di cult to adjust the air gap magnetic field of the permanent magnet generator. Consequently, the output voltage is not stable. The silicon rectifying generator has the problems of low e ciency and high failure rate.In order to solve these problems, a new type of hybrid excitation generator is developed in this paper. The developed hybrid excitation generator has a double-radial permanent magnet, a salient-pole electromagnetic combined rotor,and a fractional slot winding stator, where each rotor pole corresponds to 4.5 stator teeth. The equivalent magnetic circuit diagram of permanent magnet rotor and magnetic rotor is established. Magnetic field finite element analysis(FEA) software is used to conduct the modeling and simulation analysis on double-radial permanent magnet magnetic field, salient-pole electro-magnetic magnetic field and hybrid magnetic field. The magnetic flux density mold value diagram and vector diagram are obtained. The diagrams are used to verify the feasibility of this design. The designed electromagnetic coupling regulator controller can ensure the stable voltage export by changing the magnitude and direction of the excitation current to adjust the size of the air gap magnetic field. Therefore, the problem of output voltage instability in the wide speed range and wide load range of the hybrid excitation generator is solved. 展开更多
关键词 Vehicle Hybrid excitation GENERATOR Double-radial permanent magnet salient-pole ELECTROmagnetIC ELECTROmagnetIC coupling REGULATOR controller
下载PDF
Multi-objective Hierarchical Optimization of Interior Permanent Magnet Synchronous Machines Based on Rotor Surface Modification
7
作者 Ran Xu Wenming Tong 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第4期352-358,共7页
To solve the problem of large torque ripple of interior permanent magnet synchronous motor(IPMSM),the rotor surface notch design method was used for V-type IPMSM.In order to accurately obtain the optimal parameter val... To solve the problem of large torque ripple of interior permanent magnet synchronous motor(IPMSM),the rotor surface notch design method was used for V-type IPMSM.In order to accurately obtain the optimal parameter values to improve the torque performance of the motor,this paper takes the output torque capacity and torque ripple as the optimization objectives,and proposes a multi-objective layered optimization method based on the parameter hierarchical design combined with Taguchi method and response surface method(RSM).The conclusion can be drawn by comparing the electromagnetic performance of the motor before and after optimization,the proposed IPMSM based on the rotor surface notch design can not only improve the output torque,but also play an obvious inhibition effect on the torque ripple. 展开更多
关键词 Interior permanent magnet synchronous machine Torque ripple Rotor surface modification RSM Multi-objective hierarchical optimization
下载PDF
Optimal Pole Ratio of Spoke-type Permanent Magnet Vernier Machines for Direct-drive Applications
8
作者 Yu Zhao Dawei Li +3 位作者 Xiang Ren Ronghai Qu Jianbo Sun Ping Yu 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第4期454-464,共11页
Due to magnetic gearing effects,spoke-type permanent magnet vernier machines(ST-PMVMs)have the merit of high torque density,where an extra torque amplification coefficient,i.e.,pole ratio(the pole-pair ratio of PMs to... Due to magnetic gearing effects,spoke-type permanent magnet vernier machines(ST-PMVMs)have the merit of high torque density,where an extra torque amplification coefficient,i.e.,pole ratio(the pole-pair ratio of PMs to armature windings)is introduced.However,different from surface-mounted PMVM,the variation of torque against pole ratio in ST-PMVMs is non-linear,which is increased at first and then decreased.This article is devoted to identify the optimal pole ratio of ST-PMVMs by equivalent magnetic circuit model.It is found that except the Prth air-gap magnetomotive force(MMF)harmonic having the same pole-pair of PM,the Path air-gap MMF harmonic having the same pole-pair of armature winding is also induced due to the modulation of doubly salient air-gap structure.The Prth MMF harmonic produces positive torque,while Path MMF harmonic produces negative torque.With the increase of pole ratio,the proportion of Path MMF harmonic as well as negative torque is increased,which reduces the advantages of high pole ratio coefficient.Further,the influence of dimension parameters on the performance of ST-PMVMs under different pole ratio are investigated.Results show that ST-PMVMs with pole ratio 2.6 have high torque density,low cogging torque and high power factor simultaneously.Finally,a prototype is manufactured to validate the analysis. 展开更多
关键词 Spoke-type permanent magnet machines(ST-PMVMs) pole ratio Back electromagnetic force(EMF)and torque capability
下载PDF
State-Model Based Time-Domain Diagnosis of Internal Faults for Permanent Magnet Synchronous Machine Wind Application
9
作者 Abdelhalim Lalami Abderrazak El-Ouafi Rene Wamkeue 《Journal of Energy and Power Engineering》 2013年第11期2138-2143,共6页
Upon occurrence of an internal fault on the PMSM (permanent magnet synchronous machine), the topology of the stator is amended causing structural imbalances due to the change of the connection within the windings. I... Upon occurrence of an internal fault on the PMSM (permanent magnet synchronous machine), the topology of the stator is amended causing structural imbalances due to the change of the connection within the windings. In this work, a state model of internal faults of the PMSM is developed. This model is in the (abc) reference frame. The modeling approach is based on the assumption that each stator phase is replaced by two major and minor sub-windings. This model is used subsequently in the residual generation for diagnosis. The fault indicators are obtained by the projection in parity space and estimated using the Luenberger observer. A scenario of fault inter-turn by the short-circuit occurring between phase (a and b) is validated by simulation. 展开更多
关键词 DIAGNOSIS internal faults permanent magnet synchronous machine modeling.
下载PDF
A New Scheme to Direct Torque Control of Interior Permanent Magnet Synchronous Machine Drives for Constant Inverter Switching Frequency and Low Torque Ripple
10
作者 Mehran Sabahi Mohammad Bagher Bannae Sharifian Ali Daghigh Ebrahim Babaei 《Journal of Energy and Power Engineering》 2012年第12期2070-2075,共6页
DTC (direct torque control) can produce quick and robust response, but it has the problems of large torque ripples and inconstant inverter switching frequency. This paper introduces a modified direct torque control ... DTC (direct torque control) can produce quick and robust response, but it has the problems of large torque ripples and inconstant inverter switching frequency. This paper introduces a modified direct torque control based on the SVM (space vector modulation) for IPMSM (interior permanent magnet synchronous motor) drive. Two PI (proportional-integral) controllers regulate the flux and torque, respectively, and the inverter is controlled by the SVM technique in the proposed DTC system. Simulation results show that the performance of the proposed DTC system has been improved with respect to the conventional DTC. The DTC system can effectively reduce the flux and torque ripples. 展开更多
关键词 Direct torque control permanent magnet synchronous machine space vector modulation.
下载PDF
Design of Permanent Magnet Synchronous Generators for Wave Power Generation 被引量:4
11
作者 Fang Hongwei Wang Dan 《Transactions of Tianjin University》 EI CAS 2016年第5期396-402,共7页
In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Be... In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embedded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coefficient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell. 展开更多
关键词 analytical geometry method mechanical pole-arc coefficient OCEAN wave power generation permanent magnet synchronous GENERATOR
下载PDF
Influence of Design Parameters on Cogging Torque in Directly Driven Permanent Magnet Synchronous Wind Generators
12
作者 Q.L. Deng S.D. Huang F. Xiao 《Journal of Energy and Power Engineering》 2010年第7期42-47,共6页
In order to reduce the cogging torque, this paper investigates the influence of some parameters on the cogging torque developed by directly driven permanent magnet synchronous wind generators. Based on the remanent ma... In order to reduce the cogging torque, this paper investigates the influence of some parameters on the cogging torque developed by directly driven permanent magnet synchronous wind generators. Based on the remanent magnetic flux densities, the cogging torque is computed by using finite element method. It is shown that many parameters have influence on cogging torque and the slot and pole number combination has a significant effect on cogging torque. A simple factor has been introduced to indicate the effect of the slot and pole number combination. Some practical experience to reduce the cogging torque was applied to 2 MW three phase permanent magnet synchronous generator at rated speed of 37.5 rpm for wind energy conversion. The simulation and experiment results verify the effect of the proposed method. 展开更多
关键词 Cogging torque permanent magnet synchronous generator electric machine design.
下载PDF
Properties of Brushless DC Machine Induced by Permanent Magnets Applied to a Traction Drive
13
作者 Adam St. Jagiello Marek Dudzik 《Journal of Energy and Power Engineering》 2013年第7期1377-1381,共5页
The paper presents a mathematical model ofbrushless DC machine induced by permanent magnets. Its construction uses the classical model of permanent magnet synchronous machine and induced model of power inverter using ... The paper presents a mathematical model ofbrushless DC machine induced by permanent magnets. Its construction uses the classical model of permanent magnet synchronous machine and induced model of power inverter using the serraphil form. The results of the computer simulation were presented for such states: startup, work under active constant load and the behavior of the machine in terms of exponential and stepping change of the power inverter's control angle. 展开更多
关键词 Brushless DC machine induced by permanent magnets permanent magnet synchronous machine serraphil form computer simulation.
下载PDF
Torque Characteristics of High Torque Density Partitioned PM Consequent Pole Flux Switching Machines With Flux Barriers 被引量:4
14
作者 Wasiq Ullah Faisal Khan +1 位作者 Erwan Sulaiman Muhammad Umair 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第2期130-141,共12页
Unique double salient structure of Permanent Magnet Flux Switching Machines(PMFSM)with both Concentrated Armature inding(CAW)and Permanent Magnet(PM)on stator attract researcher's interest for high speed brushless... Unique double salient structure of Permanent Magnet Flux Switching Machines(PMFSM)with both Concentrated Armature inding(CAW)and Permanent Magnet(PM)on stator attract researcher's interest for high speed brushless application when high torque density(T den)and power density(P den)are the primal requirements.However,despite of stator leakage flux,high rare-earth PM usage,PMFSM is subjected to slot effects due to presence of both PM and CAW in stator and partial saturation due to double salient structure which generates cogging torque(T cog),torque ripples(Trip)and lower average torque(T avg).To overcomne aforesaid demerits,this paper presents Partitioned PM(PPM)Consequent Pole Flux Switching Machine(PPM-CPFSM)with flux barriers to enhance flux mnodulation,curtail PM usage and diminish stator leakage flux which reduces slotting effects and partial saturation to ultimately reduces T cog and Trip In comparison with the existing state of the art,proposed PPM-CPFSM reduces 46.5390 of the total PM volumne and offer Tavg higher up to 88.8%,suppress Trip naximun up to 24.8%,diminish Tcog up to 22.74%and offer 2.45 times Tden and Pden.Furthermore,torque characteristics of proposed PPM-CPFSM is investigated utilizing space harmonics injection i.e.inverse cosine,inverse cosine with 3rd harmonics and rotor pole shaping techniques i.e.,ecce ntric circle,chanfering and notching.Detailed electromagnetic perfornance analysis reveals that harmonics injection suppressed Tcog maximun up to 83.5%,Trip up to 40.72%at the cost of 4.71%Tavg.Finally,rotor mnechanical stress analysis is utilized for rotor withstand capability and 3D-FEA based Coupled Elctromagnetic Thermal Analysis(CETA)for thermal behavior of the developed PPM CPFSM.CETA reveals that open space along PPM act as cooling duct that inprove heat dissipation. 展开更多
关键词 AC machines Consequent pole Cogging Torque Finite element analysis permanent magnet machine Torque ripples magnetic flux leakages Harmonics Injection
下载PDF
Quantitative Comparison of Electromagnetic Performance of Electrical Machines for HEVs/EVs 被引量:6
15
作者 Z.Q.Zhu W.Q.Chu Y.Guan 《CES Transactions on Electrical Machines and Systems》 2017年第1期37-47,共11页
In this paper,various types of sinusoidal-fed electrical machines,i.e.induction machines(IMs),permanent magnet(PM)machines,synchronous reluctance machines,variable flux machines,wound field machines,are comprehensivel... In this paper,various types of sinusoidal-fed electrical machines,i.e.induction machines(IMs),permanent magnet(PM)machines,synchronous reluctance machines,variable flux machines,wound field machines,are comprehensively reviewed in terms of basic features,merits and demerits,and compared for HEV/EV traction applications.Their latest developments are highlighted while their electromagnetic performance are quantitatively compared based on the same specification as the Prius 2010 interior PM(IPM)machine,including the torque/power-speed characteristics,power factor,efficiency map,and drive cycle based overall efficiency.It is found that PM-assisted synchronous reluctance machines are the most promising alternatives to IPM machines with lower cost and potentially higher overall efficiency.Although IMs are cheaper and have better overload capability,they exhibit lower efficiency and power factor.Other electrical machines,such as synchronous reluctance machines,wound field machines,as well as many other newly developed machines,are currently less attractive due to lower torque density and efficiency. 展开更多
关键词 Electrical machines electric vehicles hybrid electric vehicles induction machines permanent magnet machines switched reluctance machines synchronous reluctance machines variable flux machines wound field machines.
下载PDF
梯形Halbach交替极无铁心永磁同步直线电机特性分析与优化设计 被引量:3
16
作者 缪仲翠 苏乙 +2 位作者 张磊 赵璇 李燕 《电机与控制学报》 EI CSCD 北大核心 2024年第1期164-176,共13页
针对无铁心永磁同步直线电机(PMLSM)存在推力波动问题以及磁极结构对永磁体利用率的影响,从结构方面着手,提出一种梯形Halbach交替极磁极结构的无铁心永磁同步直线电机,对Halbach阵列进行优化设计。首先通过有限元法对比在Halbach交替... 针对无铁心永磁同步直线电机(PMLSM)存在推力波动问题以及磁极结构对永磁体利用率的影响,从结构方面着手,提出一种梯形Halbach交替极磁极结构的无铁心永磁同步直线电机,对Halbach阵列进行优化设计。首先通过有限元法对比在Halbach交替极、双层Halbach磁极与梯形Halbach交替极3种磁极结构中PMLSM的电磁性能,分别对气隙磁场谐波成分、空载反电动势、电磁推力以及推力体积比进行计算与对比。其次,采用等效磁化强度法定性分析磁极结构对电机出力性能的影响,并引入Kriging模型,结合多目标优化算法对关键参数进行优化以提高电机平均推力和推力体积比,降低推力波动,得到3个优化目标的Pareto前沿。最后,通过仿真分析验证设计方法的有效性以及电机性能的改善。结果表明:梯形Halbach交替极磁极结构永磁体利用率更高,具有实用价值;梯形Halbach交替极PMLSM能够有效抑制推力波动并保持在7%左右,适用于高精确度加工设备。 展开更多
关键词 永磁同步直线电机 HALBACH阵列 交替极 等效磁化强度法 KRIGING模型 多目标优化
下载PDF
基于磁链相移原理的不对称交替极永磁辅助同步磁阻电机设计与分析 被引量:1
17
作者 周华伟 龙顺海 +2 位作者 江光耀 王成明 刘正蒙 《电工技术学报》 EI CSCD 北大核心 2024年第2期455-464,共10页
传统永磁辅助同步磁阻电机(PMaSynRM)无法充分利用永磁转矩和磁阻转矩,该文提出一种新型不对称交替极永磁辅助同步磁阻电机(ACP-PMaSynRM)。基于永磁磁链相移原理,将交替极永磁阵列、不对称磁极和磁障相结合,实现永磁转矩和磁阻转矩的... 传统永磁辅助同步磁阻电机(PMaSynRM)无法充分利用永磁转矩和磁阻转矩,该文提出一种新型不对称交替极永磁辅助同步磁阻电机(ACP-PMaSynRM)。基于永磁磁链相移原理,将交替极永磁阵列、不对称磁极和磁障相结合,实现永磁转矩和磁阻转矩的最大值在相同电流相位下叠加,不但提高了永磁转矩和磁阻转矩的利用率,增强了电机输出转矩能力,而且减少了永磁体用量。采用有限元法对比分析了传统和新型ACP-PMaSynRM的电磁性能,验证了所提电机拓扑的可行性。最后,制造了一台48槽14极样机并对其进行了实验验证。 展开更多
关键词 永磁辅助同步磁阻电机 交替极 磁链相移 最大转矩
下载PDF
PMSM正切趋近律无位置传感器角度补偿方法研究 被引量:2
18
作者 徐奇伟 蒋东昊 +3 位作者 王益明 张雪锋 刘津成 陈杨明 《电机与控制学报》 EI CSCD 北大核心 2024年第1期26-34,共9页
在负载转矩突变的动态过程中,基于PI调节器的角度补偿方法作用时PMSM超螺旋滑模观测器(STSMO)转子电角度估算误差波动剧烈,因此依据角度估算误差的定义,建立了转子电角度补偿算法的数学模型。根据滑模控制和趋近律理论,提出了基于正切... 在负载转矩突变的动态过程中,基于PI调节器的角度补偿方法作用时PMSM超螺旋滑模观测器(STSMO)转子电角度估算误差波动剧烈,因此依据角度估算误差的定义,建立了转子电角度补偿算法的数学模型。根据滑模控制和趋近律理论,提出了基于正切趋近律的变步长闭环角度补偿方法,选择角度估算误差的半角正切值作为角度调节步长,并通过前馈解耦得到的角度估算误差正余弦信号计算该步长,实现了对无位置传感器控制系统动态性能和抗扰动能力的改善。根据归一化灵敏度的定义,分析调节步长随角度估算误差变化的灵敏度,提出了基于归一化补偿灵敏度的系统动态性能分析方法,衡量两种补偿算法作用下系统的动态性能。计算和仿真结果表明,正切趋近律补偿方法具有更高的归一化补偿灵敏度,在负载转矩突变等角度估算误差变化剧烈的工况下能够实现更好的补偿效果,抑制估算角度误差的波动。实验结果表明,相比传统的PI补偿方法,正切趋近律补偿方法能够将突加额定转矩动态过程中角度估算误差的波动幅度降低61.9%,动态过程持续时间缩短23%,有效提升了系统的动态性能和抗扰动能力。 展开更多
关键词 永磁同步电机 无位置传感器控制 超螺旋滑模观测器 角度估算误差 PI补偿方法 滑模控制 正切趋近律 归一化补偿灵敏度
下载PDF
采用改进遗传算法优化LS-SVM逆系统的外转子无铁心无轴承永磁同步发电机解耦控制 被引量:1
19
作者 朱熀秋 沈良瑜 《中国电机工程学报》 EI CSCD 北大核心 2024年第5期2037-2046,I0032,共11页
为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(leas... 为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(least square support vector machine,LS-SVM)逆系统的解耦控制策略。首先,基于ORC-BPMSG的结构及工作原理,推导其数学模型,并分析其可逆性。其次,建立LS-SVM回归方程,并采用IGA优化LS-SVM的性能参数,从而训练得到逆系统。然后,将逆系统与原系统串接,形成伪线性系统,实现了ORC-BPMSG的线性化和解耦。最后,将提出的控制方法与传统LS-SVM逆系统控制方法进行对比仿真和实验。仿真和实验结果表明:所提出的控制策略可以较好地实现ORC-BPMSG输出电压和悬浮力、以及悬浮力之间的解耦控制。 展开更多
关键词 外转子无铁心无轴承永磁同步发电机 最小二乘支持向量机 逆系统 改进遗传算法 解耦控制
下载PDF
基于气隙磁密差信号峭度因子的永磁同步电机局部退磁故障诊断
20
作者 丁石川 吴振兴 +2 位作者 李亚 杭俊 何旺 《中国电机工程学报》 EI CSCD 北大核心 2024年第14期5747-5755,I0026,共10页
该文提出一种新型基于气隙磁密信号差峭度因子的永磁同步电机局部退磁故障诊断方法。首先,建立永磁同步电机等效磁路模型,根据简化模型分析局部退磁故障后各极主磁路下径向气隙磁密的变化规律。然后,将预存健康电机空载状态下气隙磁密... 该文提出一种新型基于气隙磁密信号差峭度因子的永磁同步电机局部退磁故障诊断方法。首先,建立永磁同步电机等效磁路模型,根据简化模型分析局部退磁故障后各极主磁路下径向气隙磁密的变化规律。然后,将预存健康电机空载状态下气隙磁密信号与测量的在线状态下气隙磁密信号作差并计算其峭度值,作为故障特征值。取健康电机空载状态下气隙磁密信号与不同工况下气隙磁密信号差峭度值的最大值作为参考值,根据故障特征值与参考值的大小诊断出局部退磁。最后,仿真和实验结果均验证提出的局部退磁故障诊断方法的有效性。 展开更多
关键词 永磁同步电机(PMSM) 气隙磁密 等效磁路 峭度因子 局部退磁故障
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部