Objective:Seawater leakage in Al-Jabal Al-Akhdar East Libya's coastal areas is one of the most biggest obstacles to farmers obtaining a highly productive crop.As a result,the experiment was conducted in a laborato...Objective:Seawater leakage in Al-Jabal Al-Akhdar East Libya's coastal areas is one of the most biggest obstacles to farmers obtaining a highly productive crop.As a result,the experiment was conducted in a laboratory to find out the impact of irrigation with seawater on the salt tolerance of Acsad Bread wheat genotypes.Method:Ten genotypes(1398,1492,1514,1522,1524,1536,1538,1544,1550,and 1562),obtained from the Arab Center for the Studies of Arid Zones and Dry Lands Acsad,were used in the study,10 seeds of each genotype with three repetitions were germinated under four seawater concentrations(10,20,30 and 40%).Results:The results showed that there were highly significant(P≤0.05)differences in the genotypes’response to all salinity concentrations,Which led to decreasing germination percentage,delaying the average germination time,and decreasing radical/plumule length and seedling fresh/dry weight compared with a control.As noted genotypes(1524,1522 and 1514)were able to germinate in all concentrations of seawater,and gave the best average for all the studied traits.Also,the study indicated that a concentration of seawater of 40%was the most toxic for all wheat genotypes.The results of this study categorize the wheat genotypes into tolerant genotypes(1524,1522 and 1514),moderate tolerant(1492,1536),and sensitive(1398,1538,1544,1550 and 1562).Conclusion:The results concluded that the possibility of wheat crops agriculture into tolerant in Libyan coastal locations in which seawater concentration did not exceed 30%.展开更多
A pot experiment was carried out on a marine saline soil to study the effect of initial soluble Na/Ca ratio of saline soil on the salinity tolerance of barley plant.The results showed that (1) the Na/Ca ratio affected...A pot experiment was carried out on a marine saline soil to study the effect of initial soluble Na/Ca ratio of saline soil on the salinity tolerance of barley plant.The results showed that (1) the Na/Ca ratio affected significantly the dry weight of the plant at an earlier stage of growth,the critical values of initial Na/Ca ratio at which the plant could grow normally on soils containing salts of 2.5,3.5 and 4.5g kg^-1 were 30,20 and 15,respectively;(2)smaller Na/Ca ratio resulted in a considerable decrease in Na accumulation but a great increase in K accumulation in the barley plant;and (3) the plasmallema of barley leaf were badly injured when the Na/Ca ratio was more than 30 and the increase of Na content of plant caused an exudation of K from the leaf cells.Some critical indexes were suggested for the cultivation of barley plant on marine saline soils and could be used as reference in the biological reclamation of marine saline soils.展开更多
Salinity is one of the major abiotic factors affecting the growth and productivity of crops in Hetao Irrigation District, China. In this study, the salinity tolerances of three local crops, wheat (Triticum aestinum L...Salinity is one of the major abiotic factors affecting the growth and productivity of crops in Hetao Irrigation District, China. In this study, the salinity tolerances of three local crops, wheat (Triticum aestinum L.), maize (Zea mays L.) and sunflower (Helianthus annuus L.), growing in 76 farm fields are evaluated with modified discount function. Salinity ecological zones appropriate for these local crops are characterized and a case study is presented for crop salinity ecological zoning. The results show that the yield reductions of wheat, maize and sunflower when grown in saline soils are attributed primarily to a reduction in spikelet number, 1 000-grain weight and seed number per head, respectively. Sunflower is the most tolerant crop among the three which had a salinity tolerance index (ST-index) of 12.24, followed by spring maize and spring wheat with ST-Indices of 9.00 and 7.43, respectively. According to the crop salinity tolerance results, the arable land in the Heping Village of this district was subdivided into four salinity ecological zones: the most suitable, suitable, sub-suitable and unsuitable zones. The area proportion of the most suitable zone for wheat, maize and sunflower within the Heping Village was 27.5, 46.5 and 77.5%, respectively. Most of the most suitable zone occurred in the western part of the village. The results of this study provide the scientific basis for optimizing the local major crop distribution and improving cultural practices management in Hetao Irrigation District.展开更多
In Burton Lake (an Antarctic littoral saline lake), as one of the overwinter species, the female Drepanopus bispinosus reach adult form in autumn. and early winter.For the subsequent life period of more than eight mon...In Burton Lake (an Antarctic littoral saline lake), as one of the overwinter species, the female Drepanopus bispinosus reach adult form in autumn. and early winter.For the subsequent life period of more than eight months, the animals experience such changing environment as increasing salinities from approximately 33 (in May) to 39 (in November). There is a considerable difference of salinity tolerance of female adults between summer and winter populations.Winter collected copepods survived lower salinities than summer collected copepods in this experiment. The upward shift in their salinity tolerance range is related to the development of field acclimation to salinity. Respiration rates of the summer animals showed a visible increase over those of winter copepods in simitar salinity and temperature conditions, thus supporting the above conclusion.展开更多
Populus euphratica Oliv. is of high salinity tolerance and used as a model species for investigating molecular mechanisms of trees' responses to salt stress. In the work presented here we found that calli of P. euphr...Populus euphratica Oliv. is of high salinity tolerance and used as a model species for investigating molecular mechanisms of trees' responses to salt stress. In the work presented here we found that calli of P. euphratica grew more rapidly and accumulated less Na+, but more K+, under salt stress than those of salt-sensitive poplar, Populus hopeiensis. Different types of Na+/H+ antiporters (SOS1, NhaD1 and NHX1) were isolated from P. euphratica; all of these genes have been shown to play important roles in plant salt tolerance mechanism in previous studies. Expression profiles of these three genes were compared between P. hopeiensis and P. euphratica in the presence and absence of salt stress by real-time PCR. The three genes were induced in both P. euphratica and P. hopeiensis by salt. Transcript levels of PeNHX1 were lower in P. euphratica than in P. hopeiensis under 150 mM NaCl stress. In addition, transcript levels of PeNhaD1 were lower, while PeSOS1 were higher in P. euphratica than in P. hopeiensis under both stressed and unstressed conditions. The results indicated that P. euphratica up-regulates different genes and consistently maintains both effluxes of Na+ and high K+ levels. Our data suggests that differences in gene expression patterns may contribute to the dif-ference in salt tolerance between these two poplars.展开更多
To screen for new sources of salinity tolerance, 688 traditional rice varieties from the Philippines and Bangladesh were obtained, and their tolerance to hypersaline conditions at the seedling stage was examined. A to...To screen for new sources of salinity tolerance, 688 traditional rice varieties from the Philippines and Bangladesh were obtained, and their tolerance to hypersaline conditions at the seedling stage was examined. A total of 29 Philippine lines and 15 Bangladeshi lines were scored as salt-tolerant.Morphological assessment(plant height, biomass and Na-K ratio) revealed that among the 44 salt-tolerant accessions, Casibon, Kalagnon and Ikogan had significantly higher relative shoot length difference, relative shoot growth reduction and shoot Na-K ratio than the tolerant check FL478.Additionally, AC and Akundo exhibited significantly higher Na-K ratios than the other genotypes. The genetic diversity of the 44 genotypes was assessed using 34 simple sequence repeat markers. A total of 133 alleles were detected across all loci. Cluster analysis showed that AC, Akundo and Kuplod were clustered along with FL478, indicating a strong genetic relatedness between these genotypes. IR29(susceptible check) was singly separated. The haplotype analysis revealed that none of the 44 genotypes had a similar allele combination as FL478. These accessions are of interest since each genotype might be different from the classical salinity-tolerant Pokkali.展开更多
Rice is sensitive to salinity stress at both the seedling and reproductive stages.The present study used 145 rice genotypes comprising of 100 landraces and 45 advanced breeding lines collected from different regions o...Rice is sensitive to salinity stress at both the seedling and reproductive stages.The present study used 145 rice genotypes comprising of 100 landraces and 45 advanced breeding lines collected from different regions of India.These genotypes were evaluated in hydroponics under control[electrical conductivity(ECe)~1.2 dS/m]and saline(ECe~10.0 dS/m)environments along with susceptible(IR29)and tolerant(FL478)checks.The stress susceptibility index for eight morphophysiological traits was estimated.Analysis of variance showed significant differences among the genotypes for all the parameters studied in control,stress and relative stress conditions.We identified 3 landraces(Kuttimanja,Tulasimog and IET-13713I)as tolerant and 14 lines as moderately tolerant to salt stress.Strong correlations in the morphological(root and shoot lengths)and physiological traits(shoot Na^(+),Ca^(2+)and Mg^(2+)contents,and Na^(+)/K^(+)ratio)were observed under all the conditions.The hierarchical cluster analysis grouped the genotypes into five clusters,among which cluster Ⅱ comprised salt-tolerant lines.Haplotyping of Saltol region using 11 simple sequence repeat markers on 17 saline tolerant and moderately tolerant lines was conducted.Markers AP3206F,RM10793 and RM3412b,located close to SKC1 gene(11.23‒12.55 Mb),displayed diverse allelic variations and they were not related to the FL478 type.In this region,tolerant lines like Kuttimanja,IET-13713I and Tulasimog have new alleles.As a result,these lines may be suitable candidates for novel genomic regions governing rice salinity tolerance.Salt-tolerance ability of Kuttimanja,Tulasimog and IET-13713I was validated in two years in three salinity stress environments.These promising lines can be used in breeding programs to broaden the genetic base of salinity tolerance in rice,and it may help to dissect key genomic regions responsible for salinity tolerance.展开更多
Salt stress is one of the major limitations to modern agriculture that negatively influences plant growth and productivity.Salt tolerant cultivar can provide excellent solution to enhance stress tolerance with plantfitn...Salt stress is one of the major limitations to modern agriculture that negatively influences plant growth and productivity.Salt tolerant cultivar can provide excellent solution to enhance stress tolerance with plantfitness to unfavorable environments.Therefore,this study was aimed to screen salt tolerant sorghum genotypes through evaluating of different morphological,biochemical,and physiological attributes in response to salinity stress.In this study,we have been evaluated total six sorghum genotypes including Hybrid sorgo,Debgiri,BD-703,BD-706,BD-707,and BD-725 under salt stress(12 dS m^(-1) NaCl).The response variables included length and weight of root and shoot,root:shoot ratio(RSR),photosynthesis(A),transpiration rate(E),elemental concen-trations(K^(+),Na^(+) and K^(+)/Na^(+)),photochemical efficiency of photosystem II(F_(v)/F_(m)),water use efficiency(WUE)and pigment content(chlorophyll a,and b).The results revealed that saline environment significantly reduced all response variables under study of sorghum genotypes,however,Hybrid sorgo remained unmatched by recording the maximum root and shoot traits.The same genotype recorded higher photosynthetic efficiency which was attributed to Na^(+) extrusion,K^(+) uptake and higher K^(+)/Na^(+) ratio(1.8 at stress),while these mechanisms were not fully active in rest of genotypes.Moreover,this study also implies the involvement of proline in imparting tolerance against saline environment in Hybrid sorgo genotype.Overall,BD-703 remained the most salt sensitive genotype as evident from the minimum morphological growth traits and the least biosynthesis of osmoprotectants.Thesefindings open new research avenues for salt stress alleviation by identifying elite salt-to-lerant genotypes of sorghum for breeding programs.展开更多
Polyploidy is pursued in plant breeding programs due mainly to its ability to yield larger vegetative or reproductive organs. In controlled growth chamber experiments, a tetraploid turnip (cv. Aijiaohuang, 4n) and i...Polyploidy is pursued in plant breeding programs due mainly to its ability to yield larger vegetative or reproductive organs. In controlled growth chamber experiments, a tetraploid turnip (cv. Aijiaohuang, 4n) and its diploid progenitor (cv. Aijiaohuang, 2n) were evaluated for their tolerance to salinity stress via investigations on a group of physiological parameters. The results indicate that the tetraploid turnip exhibit better adaptation to a high concentration salt medium (200 mmol L-1), as evidenced by a less-affected germination rate and a healthier morphological appearance at the seedling stage. Furthermore, an extension of salinity stress up to a certain period of time at the 5-7-leaf stage shows differences between the tetraploid turnip and its diploid progenitor. The former had a higher K+/Na+ ratio in the roots, higher glutathione concentration and antioxidant activities in the leaves, and smaller reductions in photosynthetic capacity in terms of leaf chlorophyll content. Studies on the differences between an autopolyploid and its respective relative, from which the autopolyploid originated, in terms of their tolerance to salinity and/or other abiotic stresses, have remained rather limited. The comparison is interesting due to a homogenous genetic background.展开更多
This paper introduces the results of selecting and breeding a micro-organism, Strain I, and its core model experiment investigation for microbial enhanced oil recovery (MEOR). Strain I was separated from the formation...This paper introduces the results of selecting and breeding a micro-organism, Strain I, and its core model experiment investigation for microbial enhanced oil recovery (MEOR). Strain I was separated from the formation water of the Dagang oil field, with analytical results showing that Strain I is a gram-positive bacillus. A further study revealed that this strain has an excellent tolerance of environmental stresses: It can survive in conditions of 70℃, 30 wt% salinity and pH3.5-9.4. Strain I can metabolize biosurfactants that could increase the oil recovery ratio, use crude oil as the single carbon source, and decompose long-chain paraffin with a large molecular weight into short-chain paraffin with a small molecular weight. The core model experiment shows that Strain I enhances oil recovery well. Using 2 vol% of the fermentation solution of Strain I to displace the crude oil in the synthetic plastic bonding core could increase the recovery ratio by 21.6%.展开更多
Mepiquat chloride(MC)priming alleviates the effects of salt stress during seed germination in cotton(Gossypium hirsutum L.),but the mechanisms underlying its effects are unknown.We found that MC priming increases salt...Mepiquat chloride(MC)priming alleviates the effects of salt stress during seed germination in cotton(Gossypium hirsutum L.),but the mechanisms underlying its effects are unknown.We found that MC priming increases salt tolerance,as evidenced by marked increases in seed vigor and germination rates,and alleviated salt toxicity by reducing Cl^(−)accumulation in germinating seeds.Consistently,electrophysiological experiments revealed that the seeds with MC priming displayed superior Cl^(−)exclusion ability in the root apex.These beneficial effects of MC priming were abolished by the abscisic acid(ABA)-synthesis blocker fluridone under salt stress.MC priming induced an early response to acclimatization and stress,as indicated by rapidly increasing ABA content during initial exposure to salt stress.Transcriptome analyses revealed that MC priming induced an array of differentially expressed genes(DEGs)in germinating seeds.The most noticeable changes in germinating seeds were MC priming-induced increases in the expression of DEGs encoding components of ABA biosynthesis,ABA catabolism,and ABA signaling pathways under salt stress.MC priming also increased the expression of some DEGs encoding Cl^(−)ion transporters(e.g.CCC,SLAC1/SLAH1/SLAH3,CLC,and ALMT9)in germinating seeds.These results indicate that MC priming-induced ABA contributes to Cl^(−)homeostasis in tissues and acts as a positive regulator of salt tolerance via regulation of Cl^(−)transporters(particularly CCC and SLAC1/SLAH1/SLAH3).Taken together,these findings shed light on the molecular mechanism underlying MC-mediated tolerance to salt stress during seed germination.展开更多
The present study reported the morpho-biochemical evaluation of 15 selected rice genotypes for salt tolerance at the seedling stage. Growth parameters including shoot length, root length, plant biomass, plant turgid w...The present study reported the morpho-biochemical evaluation of 15 selected rice genotypes for salt tolerance at the seedling stage. Growth parameters including shoot length, root length, plant biomass, plant turgid weight, plant dry weight along with relative water content were measured after exposure to saline solution (with electrical conductivity value of 12 dS/m). Genotypes, showing significant differential responses towards salinity in the fields, were assessed through 14 salinity-linked morpho-biochemical attributes, measured at 14 d after exposure of seedling in saline nutrient solution. Relative water content, chlorophyll a/b, peroxidase activity and plant biomass were identified as potential indicators of salt tolerance. Principal component analysis and successive Hierarchical clustering using Euclidean distance revealed that Talmugur, Gheus, Ghunsi, Langalmura, Sabitapalui, and Sholerpona were promising genotypes for further breeding programmes in rice. The maximum Euclidean distance was plotted between Thavallakanan and Talmugur (7.49), followed by Thavallakanan and Langalmura (6.82), indicating these combinations may be exploited as parental lines in hybridization programmes to develop salinity tolerant variety.展开更多
Drought and salinity are the most widespread soil problems, posing a big threat to food security in rice growing regions. The present study evaluated the performance of eleven rice genotypes using morphological and ph...Drought and salinity are the most widespread soil problems, posing a big threat to food security in rice growing regions. The present study evaluated the performance of eleven rice genotypes using morphological and physiological parameters, under induced drought and salinity conditions. The seedlings were raised in 5 kg of homogenous soil in plastic bags in the </span><span style="font-family:Verdana;">greenhouse</span><span style="font-family:""><span style="font-family:Verdana;">. For the drought experiment, each bag was watered with 200 ml of water twice daily until plants reached the five-leaf stage when watering was suspended for 2 weeks for the drought stressed plants but not suspended for the control plants. The experiment was a 2 × 11 factorial and the set up was arranged using the completely randomized design with three replications. Data were taken on Plant height, Number of tillers, leaf length, Number of green leaves, Number of dead leaves, Leaf rolling score (LRS) and Rate of water loss. The salinity experiment was set up in a similar manner except that the plants were irrigated twice a day for 2 weeks with 200 ml of treatment solution containing either 0 mM NaCl or 75 mM and data were collected on plant height, number of tillers, shoot fresh weight, shoot dry weight, Na</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;"> and K</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;"> concentrations, relative water content and chlorophyll content. Data from both experiments were subjected to Analysis of variance test using the GenStat software 10</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> edition and the means separated using least significant difference test. Individual stress response index (ISRI) was calculated for each parameter and the means used in grouping the varieties. Of the genotypes evaluated, four (FARO 44, NERICA 2, NERICA 8 and NERICA 5) were identified as tolerant, two (NERICA 4 and FARO 57) as moderately tolerant, while the rest were found to be sensitive to drought. Equally, two varieties (FARO 44 and RAM 137) stood out in the salinity screening as tolerant varieties, five were moderately tolerant while four (FARO 64, FARO 52, NERICA 2 and FARO 55) were clearly susceptible. FARO 44 is the only genotype that </span><span style="font-family:Verdana;">showed </span></span><span style="font-family:Verdana;">tolerance</span><span style="font-family:""> </span><span style="font-family:Verdana;">to both drought and salinity. The identified drought and salinity tolerant rice genotypes from this study can be recommended as genetic sources for future breeding programs for drought and salinity </span><span style="font-family:Verdana;">tolerance</span><span style="font-family:""> </span><span style="font-family:Verdana;">in rice.展开更多
Asian cultivated rice shows allelic variation in sodium transporter,OsHKT1;5,correlating with shoot sodium exclusion(salinity tolerance).These changes map to intra/extracellularly-oriented loops that occur between fou...Asian cultivated rice shows allelic variation in sodium transporter,OsHKT1;5,correlating with shoot sodium exclusion(salinity tolerance).These changes map to intra/extracellularly-oriented loops that occur between four transmembrane-P loop-transmembrane(MPM)motifs in OsHKT1;5.HKT1;5 sequences from more recently evolved Oryza species(O.sativa/O.officinalis complex species)contain two expansions that involve two intracellularly oriented loops/helical regions between MPM domains,potentially governing transport characteristics,while more ancestral HKT1;5 sequences have shorter intracellular loops.We compared homology models for homoeologous OcHKT 1;5-K and OcHKT1;5-L from halophytic O.coarctata to identify complementary amino acid residues in OcHKT1;5-L that potentially enhance affinity for Na+.Using haplotyping,we showed that Asian cultivated rice accessions only have a fraction of HKT1;5 diversity available in progenitor wild rice species(O.nivara and O.rufipogon).Progenitor HKT1;5 haplotypes can thus be used as novel potential donors for enhancing cultivated rice salinity tolerance.Within Asian rice accessions,10 non-synonymous HKT1;5 haplotypic groups occur.More HKT1;5 haplotypic diversities occur in cultivated indica gene pool compared to japonica.Predominant Haplotypes 2 and 10 occur in mutually exclusive japonica and indica groups,corresponding to haplotypes in O.sativa salt-sensitive and salt-tolerant landraces,respectively.This distinct haplotype partitioning may have originated in separate ancestral gene pools of indica and japonica,or from different haplotypes selected during domestication.Predominance of specific HKT1;5 haplotypes within the 3000 rice dataset may relate to eco-physiological fitness in specific geo-climatic and/or edaphic contexts.展开更多
Salinity causes a detrimental impact on plant growth,particularly when the stress occurs during germination and early development stages.Barley is one of the most salt-tolerant crops;previously we mapped two quantitat...Salinity causes a detrimental impact on plant growth,particularly when the stress occurs during germination and early development stages.Barley is one of the most salt-tolerant crops;previously we mapped two quantitative trait loci(QTL)for salinity tolerance during germination on the short arm of chromosome 2 H using a CM72/Gairdner doubled haploid(DH)population.Here,we narrowed down the major QTL to a region of 0.341 or 0.439 Mb containing 9 or 24 candidate genes belonging to 6 or 20 functional gene families according to barley reference genomes v1 and v3 respectively,using two DH populations of CM72/Gairdner and Skiff/CM72,F_(2)and F;generations of CM72/Gairdner/;Spartacus CL,Two Receptorlike kinase 4(RLPK4)v1 or Receptor-like kinase(RLK)v3 could be the candidates for enhanced germination under salinity stress because of their upregulated expression in salt-tolerant variety CM72.Besides,several insertion/deletion polymorphisms were identified within the 3 rd exon of the genes between CM72 and Gairdner.The sequence variations resulted in shifted functional protein domains,which may be associated with differences in salinity tolerance.Two molecular markers were designed for selecting the locus with receptor-like protein kinase 4,and one was inside HORVU2 Hr1 G111760.1 or HORVU.MOREX.r3.2 HG0202810.1.The diagnostic markers will allow for pyramiding of 2 H locus in barley varieties and facilitate genetic improvement for saline soils.Further,validation of the genes to elucidate the mechanisms involved in enhancing salinity tolerance at germination and designing RLPK4 specific markers is proposed.For this publication,all the analysis was based on barley reference genome of2017(v1),and it was used throughout for consistence.However,the positions of the markers and genes identified were updated according to new genome(v3)for reference.展开更多
Juveniles of Oreochromis mossambicus with initial wet weights of 0.0382±0.0859 g and initial total lengths of 0.735 ±1.425 cm were tested for their salinity tolerance. The juveniles were subjected to five sa...Juveniles of Oreochromis mossambicus with initial wet weights of 0.0382±0.0859 g and initial total lengths of 0.735 ±1.425 cm were tested for their salinity tolerance. The juveniles were subjected to five salinity levels for a period of seventy five days. These salinity levels correspond to the salinities found along the creek and in estuarine regions. Each set of experiments was conducted at a fifteen day intervals. The weight, length and survival rate were calculated. No mortality was observed at salinity levels 0, 5, 10 and 15, while the juveniles faced slight mortality at 20 in the same environmental conditions, including the diet. There was no significant difference in specific growth rate at all salinity levels. The juveniles of O. mossambicus could survive up to 20 salinity. These results suggest that this species can grow and be exploited commercially in brackish waters, rivers and estuarine regions.展开更多
Nannochloropsis oceanica is a marine microalgal species with both economic value and biological importance.It grows fast,contains rich oils,reproduces asexually,holds a small and haploidy genome,and is easy to be modi...Nannochloropsis oceanica is a marine microalgal species with both economic value and biological importance.It grows fast,contains rich oils,reproduces asexually,holds a small and haploidy genome,and is easy to be modified genetically.However,the genetic study of N.oceanica is scarce.Very less genetic bases of its traits have been deciphered,and no gene has been isolated from it with the function verified simultaneously via either genetic or reverse genetic approaches or both(de novo cloned).Changing medium salinity may aid to control harmful organisms met during large scale cultivation.As a stress,it may also facilitate the accumulation of desirable chemicals including fatty acids.In order to decipher the genetic basis of the low salinity tolerance of N.oceanica,we mutated N.oceanica with Zeocin.In total,five mutant bulks were constructed at equal number of cells,100 mutants each,which were tolerant to a discontinuous serial of salinities from that of 100%of f/2 to that of a mixture of 4%of f/2 and 94%of BG11.The bulks were genotyped through whole genome re-sequencing and analyzed with bulked mutant analysis(BMA)newly modified from bulked segregant analysis(BSA).In total,47 SNPs and 112 InDels were found to associate with the low salinity tolerance,and around them a set of low salinity tolerance associating genes were identified.A set of annotatable genes commonly found between control and different salinities indicated that the genes functioning in gene expression,energy metabolism and cellular structure may be involved in the low salinity tolerance.These associating molecular markers and genes around them were not enough for outlining the physiological mechanism underlining the tolerance;however they should aid to improve N.oceanica genetically.展开更多
The aim of this research was to evaluate the salinity tolerance in prairie grass populations at the seedling stage quantifying the variability and the influence of physiological traits related to it. Salinity toleranc...The aim of this research was to evaluate the salinity tolerance in prairie grass populations at the seedling stage quantifying the variability and the influence of physiological traits related to it. Salinity tolerance, in </span><i><span style="font-family:Verdana;">Bromus</span></i> <i><span style="font-family:Verdana;">catharticus</span></i><span style="font-family:Verdana;"> Vahl (prairie grass) populations collected in different environments of the Pampean Phytogeography region (Argentine) was evaluated at the seedling stage, using controlled condition of temperature and light. It was adopted a completely randomized design using 3 plots with three plants each one per population and two levels of treatment: 0 mM and 100 mM NaCl. Morphological, biomass and membrane stability root and shoot traits were studied. A factorial ANOVA with interaction was estimated. Then one way ANOVA for all seedling traits in both treatments allowed estimating variance components, coefficient of genotypic determination (CGD) and variation index (VI). Comparisons between populations were made using Tukey test (at 5% of probability). Phenotypic correlations among traits were calculated and then a path coefficient analysis separated direct and indirect effects at 100 and 0 mM NaCl. No significant interactions “Population × Treatment” were found for any character. The saline stress caused a pairing in the population means for the most traits. Coefficients of variation were mainly higher when the seedlings grew without stress (0 mM) because it allowed a greater potential genotypic expression. The absence of significant interactions denotes a good homeostatic capacity of the prairie grass facing that abiotic stress. Leaf length, shoot length and root dry matter were the variables with the largest direct and indirect effects. Our results showed an increase for them at salt and demonstrated intraspecific variation, possibly in relation with the origin sites. Plants under stress showed a marked resilience, in order to quickly restore the same biomass allocation patterns that occur in non-stress environment.展开更多
The study was performed with seven groundnut varieties/genotypes and F1s derived from crossing in all possible combinations without reciprocal among the mentioned varieties/genotypes. The objective was to assess wheth...The study was performed with seven groundnut varieties/genotypes and F1s derived from crossing in all possible combinations without reciprocal among the mentioned varieties/genotypes. The objective was to assess whether low Ca2+ content and Ca2+/Na+ ratio of leaf tissue or stem tissue determine salinity tolerance in terms of economic yield (kernel yield) in groundnut. It revealed that the varieties, “Binachinabadam-6”, “Binachinabadam-5” and the F1 G2 × G3 were most tolerant based on kernel yield under 8 dS/m and 10 dS/m salinity stresses. These two tolerant varieties and the F1 also showed lower Ca2+ and Ca2+/Na+ ratios in leaf tissue, which indicated lower Ca2+ and Ca2+/Na+ ratio of leaf tissue determined salinity tolerance in terms of kernel yield in Spanish type groundnut. These findings could be applied in future plant breeding applications for screening salt tolerant Spanish type groundnut genotypes.展开更多
Salinity tolerance of ambient electric arc ionization(AEAI)was evaluated by comparing electrospray ionization for various samples at NaCl concentrations from 0 to 1000 mmol/L.AEAI-mass spectrometry(AEAI-MS)exhibited a...Salinity tolerance of ambient electric arc ionization(AEAI)was evaluated by comparing electrospray ionization for various samples at NaCl concentrations from 0 to 1000 mmol/L.AEAI-mass spectrometry(AEAI-MS)exhibited an excellent signal intensity even at NaCl concentrations of 1000 mmol/L,while the ESI-MS had no signal because high salinity has a strong inhibitory effect on analytes.The sodium adduct was verified using LiCl instead of NaCl.AEAI-MS successfully quantified saline samples with an excellent quantitative ability(R^(2)≥0.998).We also achieved some analytical samples in the buffer solution at a very high concentration and even in a saturated salt solution.Overall,AEAI-MS has protonated ions for most target analytes.In addition,the relationship between auxiliary temperature and the distance from the sample to the arc was investigated,and the results indicated that thermal desorption plays an important role in AEAI source.展开更多
文摘Objective:Seawater leakage in Al-Jabal Al-Akhdar East Libya's coastal areas is one of the most biggest obstacles to farmers obtaining a highly productive crop.As a result,the experiment was conducted in a laboratory to find out the impact of irrigation with seawater on the salt tolerance of Acsad Bread wheat genotypes.Method:Ten genotypes(1398,1492,1514,1522,1524,1536,1538,1544,1550,and 1562),obtained from the Arab Center for the Studies of Arid Zones and Dry Lands Acsad,were used in the study,10 seeds of each genotype with three repetitions were germinated under four seawater concentrations(10,20,30 and 40%).Results:The results showed that there were highly significant(P≤0.05)differences in the genotypes’response to all salinity concentrations,Which led to decreasing germination percentage,delaying the average germination time,and decreasing radical/plumule length and seedling fresh/dry weight compared with a control.As noted genotypes(1524,1522 and 1514)were able to germinate in all concentrations of seawater,and gave the best average for all the studied traits.Also,the study indicated that a concentration of seawater of 40%was the most toxic for all wheat genotypes.The results of this study categorize the wheat genotypes into tolerant genotypes(1524,1522 and 1514),moderate tolerant(1492,1536),and sensitive(1398,1538,1544,1550 and 1562).Conclusion:The results concluded that the possibility of wheat crops agriculture into tolerant in Libyan coastal locations in which seawater concentration did not exceed 30%.
文摘A pot experiment was carried out on a marine saline soil to study the effect of initial soluble Na/Ca ratio of saline soil on the salinity tolerance of barley plant.The results showed that (1) the Na/Ca ratio affected significantly the dry weight of the plant at an earlier stage of growth,the critical values of initial Na/Ca ratio at which the plant could grow normally on soils containing salts of 2.5,3.5 and 4.5g kg^-1 were 30,20 and 15,respectively;(2)smaller Na/Ca ratio resulted in a considerable decrease in Na accumulation but a great increase in K accumulation in the barley plant;and (3) the plasmallema of barley leaf were badly injured when the Na/Ca ratio was more than 30 and the increase of Na content of plant caused an exudation of K from the leaf cells.Some critical indexes were suggested for the cultivation of barley plant on marine saline soils and could be used as reference in the biological reclamation of marine saline soils.
基金supported by the Special Fund for Agro-Scientific Research in the Public Interest, China (2009030012-3)
文摘Salinity is one of the major abiotic factors affecting the growth and productivity of crops in Hetao Irrigation District, China. In this study, the salinity tolerances of three local crops, wheat (Triticum aestinum L.), maize (Zea mays L.) and sunflower (Helianthus annuus L.), growing in 76 farm fields are evaluated with modified discount function. Salinity ecological zones appropriate for these local crops are characterized and a case study is presented for crop salinity ecological zoning. The results show that the yield reductions of wheat, maize and sunflower when grown in saline soils are attributed primarily to a reduction in spikelet number, 1 000-grain weight and seed number per head, respectively. Sunflower is the most tolerant crop among the three which had a salinity tolerance index (ST-index) of 12.24, followed by spring maize and spring wheat with ST-Indices of 9.00 and 7.43, respectively. According to the crop salinity tolerance results, the arable land in the Heping Village of this district was subdivided into four salinity ecological zones: the most suitable, suitable, sub-suitable and unsuitable zones. The area proportion of the most suitable zone for wheat, maize and sunflower within the Heping Village was 27.5, 46.5 and 77.5%, respectively. Most of the most suitable zone occurred in the western part of the village. The results of this study provide the scientific basis for optimizing the local major crop distribution and improving cultural practices management in Hetao Irrigation District.
文摘In Burton Lake (an Antarctic littoral saline lake), as one of the overwinter species, the female Drepanopus bispinosus reach adult form in autumn. and early winter.For the subsequent life period of more than eight months, the animals experience such changing environment as increasing salinities from approximately 33 (in May) to 39 (in November). There is a considerable difference of salinity tolerance of female adults between summer and winter populations.Winter collected copepods survived lower salinities than summer collected copepods in this experiment. The upward shift in their salinity tolerance range is related to the development of field acclimation to salinity. Respiration rates of the summer animals showed a visible increase over those of winter copepods in simitar salinity and temperature conditions, thus supporting the above conclusion.
基金NSFC (30800865, 40801001)the Education Ministry of China (NCET-05-0886)China Postdoctoral Science Foundation (20070420758)
文摘Populus euphratica Oliv. is of high salinity tolerance and used as a model species for investigating molecular mechanisms of trees' responses to salt stress. In the work presented here we found that calli of P. euphratica grew more rapidly and accumulated less Na+, but more K+, under salt stress than those of salt-sensitive poplar, Populus hopeiensis. Different types of Na+/H+ antiporters (SOS1, NhaD1 and NHX1) were isolated from P. euphratica; all of these genes have been shown to play important roles in plant salt tolerance mechanism in previous studies. Expression profiles of these three genes were compared between P. hopeiensis and P. euphratica in the presence and absence of salt stress by real-time PCR. The three genes were induced in both P. euphratica and P. hopeiensis by salt. Transcript levels of PeNHX1 were lower in P. euphratica than in P. hopeiensis under 150 mM NaCl stress. In addition, transcript levels of PeNhaD1 were lower, while PeSOS1 were higher in P. euphratica than in P. hopeiensis under both stressed and unstressed conditions. The results indicated that P. euphratica up-regulates different genes and consistently maintains both effluxes of Na+ and high K+ levels. Our data suggests that differences in gene expression patterns may contribute to the dif-ference in salt tolerance between these two poplars.
文摘To screen for new sources of salinity tolerance, 688 traditional rice varieties from the Philippines and Bangladesh were obtained, and their tolerance to hypersaline conditions at the seedling stage was examined. A total of 29 Philippine lines and 15 Bangladeshi lines were scored as salt-tolerant.Morphological assessment(plant height, biomass and Na-K ratio) revealed that among the 44 salt-tolerant accessions, Casibon, Kalagnon and Ikogan had significantly higher relative shoot length difference, relative shoot growth reduction and shoot Na-K ratio than the tolerant check FL478.Additionally, AC and Akundo exhibited significantly higher Na-K ratios than the other genotypes. The genetic diversity of the 44 genotypes was assessed using 34 simple sequence repeat markers. A total of 133 alleles were detected across all loci. Cluster analysis showed that AC, Akundo and Kuplod were clustered along with FL478, indicating a strong genetic relatedness between these genotypes. IR29(susceptible check) was singly separated. The haplotype analysis revealed that none of the 44 genotypes had a similar allele combination as FL478. These accessions are of interest since each genotype might be different from the classical salinity-tolerant Pokkali.
基金the Department of Science and Technology,Government of India(Grant No.CRG/2020/003078).
文摘Rice is sensitive to salinity stress at both the seedling and reproductive stages.The present study used 145 rice genotypes comprising of 100 landraces and 45 advanced breeding lines collected from different regions of India.These genotypes were evaluated in hydroponics under control[electrical conductivity(ECe)~1.2 dS/m]and saline(ECe~10.0 dS/m)environments along with susceptible(IR29)and tolerant(FL478)checks.The stress susceptibility index for eight morphophysiological traits was estimated.Analysis of variance showed significant differences among the genotypes for all the parameters studied in control,stress and relative stress conditions.We identified 3 landraces(Kuttimanja,Tulasimog and IET-13713I)as tolerant and 14 lines as moderately tolerant to salt stress.Strong correlations in the morphological(root and shoot lengths)and physiological traits(shoot Na^(+),Ca^(2+)and Mg^(2+)contents,and Na^(+)/K^(+)ratio)were observed under all the conditions.The hierarchical cluster analysis grouped the genotypes into five clusters,among which cluster Ⅱ comprised salt-tolerant lines.Haplotyping of Saltol region using 11 simple sequence repeat markers on 17 saline tolerant and moderately tolerant lines was conducted.Markers AP3206F,RM10793 and RM3412b,located close to SKC1 gene(11.23‒12.55 Mb),displayed diverse allelic variations and they were not related to the FL478 type.In this region,tolerant lines like Kuttimanja,IET-13713I and Tulasimog have new alleles.As a result,these lines may be suitable candidates for novel genomic regions governing rice salinity tolerance.Salt-tolerance ability of Kuttimanja,Tulasimog and IET-13713I was validated in two years in three salinity stress environments.These promising lines can be used in breeding programs to broaden the genetic base of salinity tolerance in rice,and it may help to dissect key genomic regions responsible for salinity tolerance.
基金This research was funded by the Researchers Supporting Project No. (RSP2023R390),King Saud University, Riyadh, Saudi Arabia.
文摘Salt stress is one of the major limitations to modern agriculture that negatively influences plant growth and productivity.Salt tolerant cultivar can provide excellent solution to enhance stress tolerance with plantfitness to unfavorable environments.Therefore,this study was aimed to screen salt tolerant sorghum genotypes through evaluating of different morphological,biochemical,and physiological attributes in response to salinity stress.In this study,we have been evaluated total six sorghum genotypes including Hybrid sorgo,Debgiri,BD-703,BD-706,BD-707,and BD-725 under salt stress(12 dS m^(-1) NaCl).The response variables included length and weight of root and shoot,root:shoot ratio(RSR),photosynthesis(A),transpiration rate(E),elemental concen-trations(K^(+),Na^(+) and K^(+)/Na^(+)),photochemical efficiency of photosystem II(F_(v)/F_(m)),water use efficiency(WUE)and pigment content(chlorophyll a,and b).The results revealed that saline environment significantly reduced all response variables under study of sorghum genotypes,however,Hybrid sorgo remained unmatched by recording the maximum root and shoot traits.The same genotype recorded higher photosynthetic efficiency which was attributed to Na^(+) extrusion,K^(+) uptake and higher K^(+)/Na^(+) ratio(1.8 at stress),while these mechanisms were not fully active in rest of genotypes.Moreover,this study also implies the involvement of proline in imparting tolerance against saline environment in Hybrid sorgo genotype.Overall,BD-703 remained the most salt sensitive genotype as evident from the minimum morphological growth traits and the least biosynthesis of osmoprotectants.Thesefindings open new research avenues for salt stress alleviation by identifying elite salt-to-lerant genotypes of sorghum for breeding programs.
基金supported by the Special Grand National Science and Technology Project, China(2009ZX08009-076B)the Natural Science Foundation of China (30971700)the Natural Science Foundation of Zhejiang Province, China (Z3100130)
文摘Polyploidy is pursued in plant breeding programs due mainly to its ability to yield larger vegetative or reproductive organs. In controlled growth chamber experiments, a tetraploid turnip (cv. Aijiaohuang, 4n) and its diploid progenitor (cv. Aijiaohuang, 2n) were evaluated for their tolerance to salinity stress via investigations on a group of physiological parameters. The results indicate that the tetraploid turnip exhibit better adaptation to a high concentration salt medium (200 mmol L-1), as evidenced by a less-affected germination rate and a healthier morphological appearance at the seedling stage. Furthermore, an extension of salinity stress up to a certain period of time at the 5-7-leaf stage shows differences between the tetraploid turnip and its diploid progenitor. The former had a higher K+/Na+ ratio in the roots, higher glutathione concentration and antioxidant activities in the leaves, and smaller reductions in photosynthetic capacity in terms of leaf chlorophyll content. Studies on the differences between an autopolyploid and its respective relative, from which the autopolyploid originated, in terms of their tolerance to salinity and/or other abiotic stresses, have remained rather limited. The comparison is interesting due to a homogenous genetic background.
文摘This paper introduces the results of selecting and breeding a micro-organism, Strain I, and its core model experiment investigation for microbial enhanced oil recovery (MEOR). Strain I was separated from the formation water of the Dagang oil field, with analytical results showing that Strain I is a gram-positive bacillus. A further study revealed that this strain has an excellent tolerance of environmental stresses: It can survive in conditions of 70℃, 30 wt% salinity and pH3.5-9.4. Strain I can metabolize biosurfactants that could increase the oil recovery ratio, use crude oil as the single carbon source, and decompose long-chain paraffin with a large molecular weight into short-chain paraffin with a small molecular weight. The core model experiment shows that Strain I enhances oil recovery well. Using 2 vol% of the fermentation solution of Strain I to displace the crude oil in the synthetic plastic bonding core could increase the recovery ratio by 21.6%.
基金This work was supported by the National Natural Science Foundation of China(31801312)the National Key Research and Development Program of China(2017YFD0101600)+1 种基金Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences,the China Agriculture Research System(CARS-18-05)Xinjiang Production and Construction Corps Science&Technology NOVA Program(2020CB029).
文摘Mepiquat chloride(MC)priming alleviates the effects of salt stress during seed germination in cotton(Gossypium hirsutum L.),but the mechanisms underlying its effects are unknown.We found that MC priming increases salt tolerance,as evidenced by marked increases in seed vigor and germination rates,and alleviated salt toxicity by reducing Cl^(−)accumulation in germinating seeds.Consistently,electrophysiological experiments revealed that the seeds with MC priming displayed superior Cl^(−)exclusion ability in the root apex.These beneficial effects of MC priming were abolished by the abscisic acid(ABA)-synthesis blocker fluridone under salt stress.MC priming induced an early response to acclimatization and stress,as indicated by rapidly increasing ABA content during initial exposure to salt stress.Transcriptome analyses revealed that MC priming induced an array of differentially expressed genes(DEGs)in germinating seeds.The most noticeable changes in germinating seeds were MC priming-induced increases in the expression of DEGs encoding components of ABA biosynthesis,ABA catabolism,and ABA signaling pathways under salt stress.MC priming also increased the expression of some DEGs encoding Cl^(−)ion transporters(e.g.CCC,SLAC1/SLAH1/SLAH3,CLC,and ALMT9)in germinating seeds.These results indicate that MC priming-induced ABA contributes to Cl^(−)homeostasis in tissues and acts as a positive regulator of salt tolerance via regulation of Cl^(−)transporters(particularly CCC and SLAC1/SLAH1/SLAH3).Taken together,these findings shed light on the molecular mechanism underlying MC-mediated tolerance to salt stress during seed germination.
文摘The present study reported the morpho-biochemical evaluation of 15 selected rice genotypes for salt tolerance at the seedling stage. Growth parameters including shoot length, root length, plant biomass, plant turgid weight, plant dry weight along with relative water content were measured after exposure to saline solution (with electrical conductivity value of 12 dS/m). Genotypes, showing significant differential responses towards salinity in the fields, were assessed through 14 salinity-linked morpho-biochemical attributes, measured at 14 d after exposure of seedling in saline nutrient solution. Relative water content, chlorophyll a/b, peroxidase activity and plant biomass were identified as potential indicators of salt tolerance. Principal component analysis and successive Hierarchical clustering using Euclidean distance revealed that Talmugur, Gheus, Ghunsi, Langalmura, Sabitapalui, and Sholerpona were promising genotypes for further breeding programmes in rice. The maximum Euclidean distance was plotted between Thavallakanan and Talmugur (7.49), followed by Thavallakanan and Langalmura (6.82), indicating these combinations may be exploited as parental lines in hybridization programmes to develop salinity tolerant variety.
文摘Drought and salinity are the most widespread soil problems, posing a big threat to food security in rice growing regions. The present study evaluated the performance of eleven rice genotypes using morphological and physiological parameters, under induced drought and salinity conditions. The seedlings were raised in 5 kg of homogenous soil in plastic bags in the </span><span style="font-family:Verdana;">greenhouse</span><span style="font-family:""><span style="font-family:Verdana;">. For the drought experiment, each bag was watered with 200 ml of water twice daily until plants reached the five-leaf stage when watering was suspended for 2 weeks for the drought stressed plants but not suspended for the control plants. The experiment was a 2 × 11 factorial and the set up was arranged using the completely randomized design with three replications. Data were taken on Plant height, Number of tillers, leaf length, Number of green leaves, Number of dead leaves, Leaf rolling score (LRS) and Rate of water loss. The salinity experiment was set up in a similar manner except that the plants were irrigated twice a day for 2 weeks with 200 ml of treatment solution containing either 0 mM NaCl or 75 mM and data were collected on plant height, number of tillers, shoot fresh weight, shoot dry weight, Na</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;"> and K</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;"> concentrations, relative water content and chlorophyll content. Data from both experiments were subjected to Analysis of variance test using the GenStat software 10</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> edition and the means separated using least significant difference test. Individual stress response index (ISRI) was calculated for each parameter and the means used in grouping the varieties. Of the genotypes evaluated, four (FARO 44, NERICA 2, NERICA 8 and NERICA 5) were identified as tolerant, two (NERICA 4 and FARO 57) as moderately tolerant, while the rest were found to be sensitive to drought. Equally, two varieties (FARO 44 and RAM 137) stood out in the salinity screening as tolerant varieties, five were moderately tolerant while four (FARO 64, FARO 52, NERICA 2 and FARO 55) were clearly susceptible. FARO 44 is the only genotype that </span><span style="font-family:Verdana;">showed </span></span><span style="font-family:Verdana;">tolerance</span><span style="font-family:""> </span><span style="font-family:Verdana;">to both drought and salinity. The identified drought and salinity tolerant rice genotypes from this study can be recommended as genetic sources for future breeding programs for drought and salinity </span><span style="font-family:Verdana;">tolerance</span><span style="font-family:""> </span><span style="font-family:Verdana;">in rice.
基金supported by the Department of Biotechnology,Government of India(Grant No.BT/PR11396/NDB/52/118/2008)and Council for Scientific and Industrial Research,India for Senior Research Fellowship(Grant No.09/656(0018)/2016-EMR-1)to Shalini PULIPATIfunding and support provided by JC Bose Fellowship(Grant No.SB/S2/JC-071/2015)from Science and Engineering Research Board,India and Bioinformatics Centre Grant funded by Department of Biotechnology,India(Grant No.BT/PR40187/BTIS/137/9/2021)。
文摘Asian cultivated rice shows allelic variation in sodium transporter,OsHKT1;5,correlating with shoot sodium exclusion(salinity tolerance).These changes map to intra/extracellularly-oriented loops that occur between four transmembrane-P loop-transmembrane(MPM)motifs in OsHKT1;5.HKT1;5 sequences from more recently evolved Oryza species(O.sativa/O.officinalis complex species)contain two expansions that involve two intracellularly oriented loops/helical regions between MPM domains,potentially governing transport characteristics,while more ancestral HKT1;5 sequences have shorter intracellular loops.We compared homology models for homoeologous OcHKT 1;5-K and OcHKT1;5-L from halophytic O.coarctata to identify complementary amino acid residues in OcHKT1;5-L that potentially enhance affinity for Na+.Using haplotyping,we showed that Asian cultivated rice accessions only have a fraction of HKT1;5 diversity available in progenitor wild rice species(O.nivara and O.rufipogon).Progenitor HKT1;5 haplotypes can thus be used as novel potential donors for enhancing cultivated rice salinity tolerance.Within Asian rice accessions,10 non-synonymous HKT1;5 haplotypic groups occur.More HKT1;5 haplotypic diversities occur in cultivated indica gene pool compared to japonica.Predominant Haplotypes 2 and 10 occur in mutually exclusive japonica and indica groups,corresponding to haplotypes in O.sativa salt-sensitive and salt-tolerant landraces,respectively.This distinct haplotype partitioning may have originated in separate ancestral gene pools of indica and japonica,or from different haplotypes selected during domestication.Predominance of specific HKT1;5 haplotypes within the 3000 rice dataset may relate to eco-physiological fitness in specific geo-climatic and/or edaphic contexts.
基金Australian Grains Research and Development Corporation(GRDC)grant IDUmu00046Graduate Research Funds from Murdoch University。
文摘Salinity causes a detrimental impact on plant growth,particularly when the stress occurs during germination and early development stages.Barley is one of the most salt-tolerant crops;previously we mapped two quantitative trait loci(QTL)for salinity tolerance during germination on the short arm of chromosome 2 H using a CM72/Gairdner doubled haploid(DH)population.Here,we narrowed down the major QTL to a region of 0.341 or 0.439 Mb containing 9 or 24 candidate genes belonging to 6 or 20 functional gene families according to barley reference genomes v1 and v3 respectively,using two DH populations of CM72/Gairdner and Skiff/CM72,F_(2)and F;generations of CM72/Gairdner/;Spartacus CL,Two Receptorlike kinase 4(RLPK4)v1 or Receptor-like kinase(RLK)v3 could be the candidates for enhanced germination under salinity stress because of their upregulated expression in salt-tolerant variety CM72.Besides,several insertion/deletion polymorphisms were identified within the 3 rd exon of the genes between CM72 and Gairdner.The sequence variations resulted in shifted functional protein domains,which may be associated with differences in salinity tolerance.Two molecular markers were designed for selecting the locus with receptor-like protein kinase 4,and one was inside HORVU2 Hr1 G111760.1 or HORVU.MOREX.r3.2 HG0202810.1.The diagnostic markers will allow for pyramiding of 2 H locus in barley varieties and facilitate genetic improvement for saline soils.Further,validation of the genes to elucidate the mechanisms involved in enhancing salinity tolerance at germination and designing RLPK4 specific markers is proposed.For this publication,all the analysis was based on barley reference genome of2017(v1),and it was used throughout for consistence.However,the positions of the markers and genes identified were updated according to new genome(v3)for reference.
文摘Juveniles of Oreochromis mossambicus with initial wet weights of 0.0382±0.0859 g and initial total lengths of 0.735 ±1.425 cm were tested for their salinity tolerance. The juveniles were subjected to five salinity levels for a period of seventy five days. These salinity levels correspond to the salinities found along the creek and in estuarine regions. Each set of experiments was conducted at a fifteen day intervals. The weight, length and survival rate were calculated. No mortality was observed at salinity levels 0, 5, 10 and 15, while the juveniles faced slight mortality at 20 in the same environmental conditions, including the diet. There was no significant difference in specific growth rate at all salinity levels. The juveniles of O. mossambicus could survive up to 20 salinity. These results suggest that this species can grow and be exploited commercially in brackish waters, rivers and estuarine regions.
基金Supported by the National Key R&D Program of China(Nos.2018YFD0900305,2018YFD0901506)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018SDKJ0406-3)the Fundamental Research Funds for the Central Universities(No.201762017)。
文摘Nannochloropsis oceanica is a marine microalgal species with both economic value and biological importance.It grows fast,contains rich oils,reproduces asexually,holds a small and haploidy genome,and is easy to be modified genetically.However,the genetic study of N.oceanica is scarce.Very less genetic bases of its traits have been deciphered,and no gene has been isolated from it with the function verified simultaneously via either genetic or reverse genetic approaches or both(de novo cloned).Changing medium salinity may aid to control harmful organisms met during large scale cultivation.As a stress,it may also facilitate the accumulation of desirable chemicals including fatty acids.In order to decipher the genetic basis of the low salinity tolerance of N.oceanica,we mutated N.oceanica with Zeocin.In total,five mutant bulks were constructed at equal number of cells,100 mutants each,which were tolerant to a discontinuous serial of salinities from that of 100%of f/2 to that of a mixture of 4%of f/2 and 94%of BG11.The bulks were genotyped through whole genome re-sequencing and analyzed with bulked mutant analysis(BMA)newly modified from bulked segregant analysis(BSA).In total,47 SNPs and 112 InDels were found to associate with the low salinity tolerance,and around them a set of low salinity tolerance associating genes were identified.A set of annotatable genes commonly found between control and different salinities indicated that the genes functioning in gene expression,energy metabolism and cellular structure may be involved in the low salinity tolerance.These associating molecular markers and genes around them were not enough for outlining the physiological mechanism underlining the tolerance;however they should aid to improve N.oceanica genetically.
文摘The aim of this research was to evaluate the salinity tolerance in prairie grass populations at the seedling stage quantifying the variability and the influence of physiological traits related to it. Salinity tolerance, in </span><i><span style="font-family:Verdana;">Bromus</span></i> <i><span style="font-family:Verdana;">catharticus</span></i><span style="font-family:Verdana;"> Vahl (prairie grass) populations collected in different environments of the Pampean Phytogeography region (Argentine) was evaluated at the seedling stage, using controlled condition of temperature and light. It was adopted a completely randomized design using 3 plots with three plants each one per population and two levels of treatment: 0 mM and 100 mM NaCl. Morphological, biomass and membrane stability root and shoot traits were studied. A factorial ANOVA with interaction was estimated. Then one way ANOVA for all seedling traits in both treatments allowed estimating variance components, coefficient of genotypic determination (CGD) and variation index (VI). Comparisons between populations were made using Tukey test (at 5% of probability). Phenotypic correlations among traits were calculated and then a path coefficient analysis separated direct and indirect effects at 100 and 0 mM NaCl. No significant interactions “Population × Treatment” were found for any character. The saline stress caused a pairing in the population means for the most traits. Coefficients of variation were mainly higher when the seedlings grew without stress (0 mM) because it allowed a greater potential genotypic expression. The absence of significant interactions denotes a good homeostatic capacity of the prairie grass facing that abiotic stress. Leaf length, shoot length and root dry matter were the variables with the largest direct and indirect effects. Our results showed an increase for them at salt and demonstrated intraspecific variation, possibly in relation with the origin sites. Plants under stress showed a marked resilience, in order to quickly restore the same biomass allocation patterns that occur in non-stress environment.
文摘The study was performed with seven groundnut varieties/genotypes and F1s derived from crossing in all possible combinations without reciprocal among the mentioned varieties/genotypes. The objective was to assess whether low Ca2+ content and Ca2+/Na+ ratio of leaf tissue or stem tissue determine salinity tolerance in terms of economic yield (kernel yield) in groundnut. It revealed that the varieties, “Binachinabadam-6”, “Binachinabadam-5” and the F1 G2 × G3 were most tolerant based on kernel yield under 8 dS/m and 10 dS/m salinity stresses. These two tolerant varieties and the F1 also showed lower Ca2+ and Ca2+/Na+ ratios in leaf tissue, which indicated lower Ca2+ and Ca2+/Na+ ratio of leaf tissue determined salinity tolerance in terms of kernel yield in Spanish type groundnut. These findings could be applied in future plant breeding applications for screening salt tolerant Spanish type groundnut genotypes.
基金supported by the China State Key Research Program(No.2016YFF0200503)National Natural Science Founda-tion of China(No.21927810)Sichuan Normal University(Nos.SYJS2020010 and KFSY2020004).
文摘Salinity tolerance of ambient electric arc ionization(AEAI)was evaluated by comparing electrospray ionization for various samples at NaCl concentrations from 0 to 1000 mmol/L.AEAI-mass spectrometry(AEAI-MS)exhibited an excellent signal intensity even at NaCl concentrations of 1000 mmol/L,while the ESI-MS had no signal because high salinity has a strong inhibitory effect on analytes.The sodium adduct was verified using LiCl instead of NaCl.AEAI-MS successfully quantified saline samples with an excellent quantitative ability(R^(2)≥0.998).We also achieved some analytical samples in the buffer solution at a very high concentration and even in a saturated salt solution.Overall,AEAI-MS has protonated ions for most target analytes.In addition,the relationship between auxiliary temperature and the distance from the sample to the arc was investigated,and the results indicated that thermal desorption plays an important role in AEAI source.