Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to o...Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to obtain the crop water sensitivity index, the salinity sensitivity index, and other parameters. Using data collected during 35 years to calculate the 10-day mean precipitation and evaporation, the variation in soil salinity concentrations and in the yields of winter wheat and cotton were simulated for 49 irrigation scheduling that were combined from 7 irrigation schemes over 3 irrigation dates and 7 salinity concentrations of saline irrigation water (fresh water and 6 levels of saline water). Comparison of predicted results with irrigation data obtained from a large area of the field showed that the model was valid and reliable. Based on the analysis of the investment cost of the irrigation that employed deep tube wells or shallow tube wells, a saline water irrigation schedule and a corresponding strategy for groundwater development and utilization were proposed. For wheat or cotton, if the salinity concentration was higher than 7.0 g L-1 in groundwater, irrigation was needed with only fresh water; if about 5.0 g L-1, irrigation was required twice with fresh water and once with saline water; and if not higher than 3.0 g L-1, irrigation could be solely with saline water.展开更多
Saline intrusion into marine sewage ouffalls will greatly decrease the efficiency of sewage disposal. In order to investigate the mechanisms of this flow, in this paper, a three-dimensional numerical model based on F...Saline intrusion into marine sewage ouffalls will greatly decrease the efficiency of sewage disposal. In order to investigate the mechanisms of this flow, in this paper, a three-dimensional numerical model based on FVM (Finite Volume Method) is established, The RNG κ-ε model is selected for turbulence modeling. The time-averaged vohtme fraction equations are introduced to simulate the stratification and inteffaeial exchange of sewage and seawater in outfalls. Validity of the established three-dimensional numerical model is evaluated by comparisons of numerical results with experimental data. With this three-dimensional numerical model, the internal flow characteristics in ouffalls for different sewage discharges are simulated. The results indicate that for a low sewage discharge, saline circulates in the outfall due to intrusion and both the inflowing momentum and the inteffaeial turbulent mixing are important mechanisms to extrude the saline. For a high sewage discharge, saline intrusion could be avoided. The inflow momentum is the main mechanism to extrude the saline and the inteffacial turbulent mixing is nut important relatively. Even at a high sewage discharge, the saline wedge would be retained in the main ouffall pipe after the risers are purged. It takes a long time for this saline wedge to be extruded by interracial turbulent mixing.展开更多
In the Saloum region of central-western Senegal, water needs are essentially met by tapping an underground aquifer associated with the sandy-clay formations of the Continental Terminal, in contact with both the ocean ...In the Saloum region of central-western Senegal, water needs are essentially met by tapping an underground aquifer associated with the sandy-clay formations of the Continental Terminal, in contact with both the ocean to the west and the highly saline waters of the Saloum River to the north. In this estuarine and deltaic zone with its very low relief, the hydraulic loads in the water tables are generally close to zero or even negative, creating a reversal of the natural flow and encouraging saline intrusion into this system, which makes it very vulnerable. This study concerns the implementation of a numerical model of saline intrusion to provide a better understanding of the vulnerability of the water table by analyzing the variability of the freshwater/saltwater interface. The Modflow-2005 code is used to simulate saline intrusion using the SWI2 module, coupled with the GRASS (Geographic Resources Analysis Support System) software under the Linux operating system with the steep interface approach. The probable expansion of the wedge is studied in three scenarios, taking into account its position relative to the bedrock at 1 m, 5 m and 10 m. Simulations carried out under imposed potential and river conditions, based on variations in groundwater reserves using two effective porosity values, 10−1 and 10−2, show that the water table is highly vulnerable in the northwest sector. The probable expansion of the wedge increases as the storage coefficient decreases and is more marked with river conditions in the areas surrounding the Saloum River, reaching 6 km with a probability of 1. The probability of the wedge reaching a certain degree of expansion decreases from 1 to 0.5, and then cancels out as it moves inland. The probable position of the wedge is limited to 500 m or even 1 km depending on the corner around the coast to the southwest and in the southern zone. This modelling, carried out under natural conditions, will be developed further, taking into account climatic parameters and pumping from wells and boreholes.展开更多
1 Introduction The attractiveness of Shaazgai-Nuur Soda Lake(pH9.2-9.4)as an alternative metal source is explained by the high concentration of dissolved uranium(~1 mg/l)due to the location of water drainage territory...1 Introduction The attractiveness of Shaazgai-Nuur Soda Lake(pH9.2-9.4)as an alternative metal source is explained by the high concentration of dissolved uranium(~1 mg/l)due to the location of water drainage territory within the Tsagan-展开更多
A series of saline soil-related problems,including salt expansion and collapse,frost heave and thaw settlement,threaten the safety of the road traffic and the built infrastructure in cold regions.This article presents...A series of saline soil-related problems,including salt expansion and collapse,frost heave and thaw settlement,threaten the safety of the road traffic and the built infrastructure in cold regions.This article presents a comprehensive review of the physical and mechanical properties,salt migration mechanisms of saline soil in cold environment,and the countermeasures in practice.It is organized as follows:(1)The basic physical characteristics;(2)The strength criteria and constitutive models;(3)Water and salt migration characteristics and mechanisms;and(4)Countermeasures of frost heave and salt expansion.The review provides a holistic perspective for recent progress in the strength characteristics,mechanisms of frost heave and salt expansion,engineering countermeasures of saline soil in cold regions.Future research is proposed on issues such as the effects of salt erosion on concrete and salt corrosion of metal under the joint action of evaporation and freeze-thaw cycles.展开更多
The research aimed to analyze changes in photosynthetic characteristics of Paeonia ludlowii under saline-alkali stress, and annual seedlings of P. ludlowii were taken as the materials. Photoresponse process of P. ludl...The research aimed to analyze changes in photosynthetic characteristics of Paeonia ludlowii under saline-alkali stress, and annual seedlings of P. ludlowii were taken as the materials. Photoresponse process of P. ludlowii leaves under saline-alkali stress was simulated, and different models were used to fit photoresponse curve. The results showed that P n of P. ludlowii leaves showed the trend of first rising and then declining with PAR increased under saline-alkali stress;both G s and T r showed a rising trend with PAR increased;C i showed the trend of first declining and then rising with PAR increased. Photoresponse curve fitted by modified rectangular hyperbolic model had the best effect, and it was the optimal fitting model. P. ludlowii could adapt to saline-alkali stress in lower concentration, showing that P. ludlowii could be introduced and cultivated in saline-alkali land at a lower level.展开更多
The most important task in leaching practices is assessment of water quantity required for leaching of saline and saline-sodic soils. Therefore, reliable estimation of the required leaching water quantity is vital for...The most important task in leaching practices is assessment of water quantity required for leaching of saline and saline-sodic soils. Therefore, reliable estimation of the required leaching water quantity is vital for reducing soil salinity to a desirable level. The present study aimed to investigate desodification of saline and sodic soils in central area of Khuzestan Province. Consequently, a large area of 3216 ha with S4A3 salinity/sodicity class in Khuzestan, Iran, was selected to obtain the required data. This experiment was conducted with two treatments and tree replicates. In the first treatment, the experiment was conducted by applying just 100 cm water depth in four 25 cm intervals. In the second treatment, 5000 kg/ha Sulfuric Acid was applied prior to salt leaching together with leaching water. The intermittent ponding method was conducted with double rings in a rectangular array. The required physical and chemical analyses were performed on the collected data. The leaching water was supplied from Shotait River. Four mathematical models were applied to the collected experimental data to derive a suitable empirical model. The results for large scale applications indicated that the proposed logarithmic model can estimate the capital leaching requirement much than the previously proposed models.展开更多
In this study, we mainly introduce two salinity parameterization schemes used in Sea Ice Simulator (SIS), that is, isosaline scheme and salinity profile scheme. Comparing the equation of isosaline scheme with that o...In this study, we mainly introduce two salinity parameterization schemes used in Sea Ice Simulator (SIS), that is, isosaline scheme and salinity profile scheme. Comparing the equation of isosaline scheme with that of salinity profile scheme, we found that there was one different term between the two schemes named the salinity different term. The thermodynamic effect of the salinity difference term on sea ice thickness and sea ice concentration showed that: in the freezing processes from November to next May, the sea ice temperature could rise on the influence of the salinity difference term and restrain sea ice freezing; at the first melting phase from June to August, the upper ice melting rate was faster than the lower ice melting rate. Then sea ice temperature could rise and accelerate the sea ice melting; at the second melting phase from September to October, the upper ice melting rate was slower than the lower ice melting rate, then sea ice temperature could decrease and restrain sea ice melting. However, the effect of the salinity difference term on the sea ice thickness and sea ice concentration was weak. To analyze the impacts of the salinity different term on Arctic sea ice thickness and sea ice concentration, we also designed several experiments by introducing the two salinity parameterizations to the ice-ocean coupled model, Modular Ocean Model (MOM4), respectively. The simulated results confirmed the previous results of formula derivation.展开更多
The main source of water in Gaza Strip is the shallow coastal aquifer. It is extremely deteriorated in terms of salinity which influenced by many variables. Studying the relation between these variables and salinity i...The main source of water in Gaza Strip is the shallow coastal aquifer. It is extremely deteriorated in terms of salinity which influenced by many variables. Studying the relation between these variables and salinity is often a complex and nonlinear process, making it suitable to model by Artificial Neural Networks (ANN). Initially, it is assumed that the salinity (represented by chloride concentration, mg/l) may be affected by some variables as: recharge rate, abstraction, abstraction average rate, life time and aquifer thickness. Data were extracted from 56 municipal wells, covering the area of Gaza Strip. After a number of modeling trials, the best neural network was determined to be Multilayer Perceptron network (MLP) with four layers: an input layer of 6 neurons, first hidden layer with 10 neurons, second hidden layer with 7 neurons and the output layer with 1 neuron which gives the final chloride concentration. The ANN model generated very good results depending on the high correlation between the observed and simulated values of chloride concentration. The correlation coefficient (r) was 0.9848. The high value of (r) showed that the simulated chloride concentration values using the ANN model were in very good agreement with the observed chloride concentration which mean that ANN model is useful and applicable for groundwater salinity modeling. ANN model was successfully utilized as analytical tool to study influence of the input variables on chloride concentration. It proved that chloride concentration in groundwater is reduced by decreasing abstraction, abstraction average rate and life time. Furthermore, it is reduced by increasing recharge rate and aquifer thickness.展开更多
From 1997 to 2000, four field surveys were conducted in the East China Sea (ECS) (23°30'-33°00'N, 118°30'-128°00'E). A field data yield density model was used to determine the optimal salin...From 1997 to 2000, four field surveys were conducted in the East China Sea (ECS) (23°30'-33°00'N, 118°30'-128°00'E). A field data yield density model was used to determine the optimal salinities for 19 dominant copepod species to establish the relationship between surface salinities and abundance of those species. In addition, ecological groups of the copepods were classified based on optimal salinity and geographical distribution. The results indicate that the yield density model is suitable for determining the relationship between salinity and abundance. Cosmocalanus darwini, Euchaeta rimana, Pleuromamma gracilis, Rhincalanus cornutus, Scolecithrix danae and Pareucalanus attenuatus were determined as oceanic species, with optimal salinities of 〉34.0. They were stenohaline and mainly distributed in waters influenced by the Kuroshio or Taiwan warm current. Temora discaudata, T. stylifera and Canthocalanus pauper were nearshore species with optimal salinities of 〈33.0 and most abundant in coastal waters. The remaining 10 species, including Undinula vulgaris and Subeucalanus suberassus, were offshore species, with optimal salinity ranging from 33.0-34.0. They were widely distributed in nearshore, offshore and oceanic waters but mainly in the mixed water of the ECS.展开更多
Salt expansion in sulfate saline soils that are widely distributed in northwestern China causes serious infrastructural damages under low-temperature conditions. However, the mechanism of salt expansion under low temp...Salt expansion in sulfate saline soils that are widely distributed in northwestern China causes serious infrastructural damages under low-temperature conditions. However, the mechanism of salt expansion under low temperatures is not clear. In this study, we conducted a series of cooling experiments combined with salt crystallization to study this mechanism, and employed an ionic model to calculate the supersaturation ratio of the solution. During the experiments, the strength and the process of salt expansion were examined under different cooling rates and various crystal morphologies. The relationship between temperature and supersaturation ratio under transient conditions was also considered. Results indicate that the initial supersaturation ratio of a sodium sulfate solution is closely related to environmental conditions, and that this ratio decreases with slowing the cooling rates and stabilizing the crystal forms. Higher initial supersaturation ratios lead to an increased non-steady-state zone, resulting in less salt expansion. On the other hand, chloride ion content has a distinct influence on the crystallization supersaturation ratio of the sodium sulfate solution, and higher chloride ion content can inhibit salt expansion in sodium saline soils. These findings help explain salt expansion mechanisms in complex conditions such as seasonally frozen soils, and thus help search for improved methods of preventing salt expansion in sulfate saline soils.展开更多
Salinization and desertification are closely related to water-salt migration caused by a temperature gradient.Based on the Darcy Law of unsaturated soils,the law of energy conservation and the law of mass conservation...Salinization and desertification are closely related to water-salt migration caused by a temperature gradient.Based on the Darcy Law of unsaturated soils,the law of energy conservation and the law of mass conservation,the thermal-water-salt coupling mathematical model of unsaturated frozen saline soil was established.The model considered the latent heat of phase change,crystallization impedance,crystallization consumption and complete precipitation of solute crystallization in ice.In order to verify the rationality of the model,the unidirectional freezing test of unsaturated saline soil was carried out in an open system with no-pressure water supplement to obtain the spatial distribution of temperature,moisture and salt in the saline soil.Finally,numerical simulations are implemented with the assistance of COMSOL Multiphysics.Validation of the model is illustrated by comparisons between the simulation and experimental data.The results demonstrated that the temperature within saline soil changes with time and can be divided into three stages,namely quick freezing stage,transitional stage and stable stage.The water and salt contents in the freezing zone are layered,with peak values at the freezing front.The coupled model could reveal the heat-mass migration mechanism of unsaturated frozen saline soil and dynamically describe the freezing depth and the movement law of the freezing front,ice and salt crystal formation mechanism,and the change law of thermal conductivity and permeability coefficient.展开更多
Salt-affected soils, caused by natural or human activities, are a common environmental hazard in semi-arid and arid landscapes. Excess salts in soils affect plant growth and production, soil and water quality and, the...Salt-affected soils, caused by natural or human activities, are a common environmental hazard in semi-arid and arid landscapes. Excess salts in soils affect plant growth and production, soil and water quality and, therefore, increase soil erosion and land degradation. This research investigates the performance of five different semi-empirical predictive models for soil salinity spatial distribution mapping in arid environment using OLI sensor image data. This is the first attempt to test remote sensing based semi-empirical salinity predictive models in this area: the Kingdom of Bahrain. To achieve our objectives, OLI data were standardized from the atmosphere interferences, the sensor radiometric drift, and the topographic and geometric distortions. Then, the five semi-empirical predictive models based on the Normalized Difference Salinity Index (NDSI), the Salinity Index-ASTER (SI-ASTER), the Salinity Index-1 (SI-1), the Soil Salinity and Sodicity Index-1 and Index-2 (SSSI-1 and SSSI-2), developed for slight and moderate salinity in agricultural land, were implemented and applied to OLI image data. For validation purposes, a fieldwork was organized and different important spots-locations representing different salinity levels were visited, photographed, and localized using an accurate GPS (σ ≤ ±30 cm). Based on this a priori knowledge of the soil salinity, six validation sites were selected to reflect non-saline, low, moderate, high and extreme salinity classes, descriptive statistics extracted from polygons and/or transects over these sites were used. The obtained results showed that the models based on NDSI, SI-1 and SI-ASTER all failed to detect salinity bounds for both extreme salinity (Sabkhah) and non-saline conditions. In Fact, NDSI and SI-ASTER gave respectively only 35% dS/m and 25% dS/m in extreme salinity validation site, while SI-1 and SI-ASTER indicated 38% dS/m and 39% dS/m in non-saline validation site. Therefore, these three models were deemed inadequate for the study site. However, both SSSI-1 and SSSI-2 allowed a detection of the previous salinity bounds and furthermore described similarly and correctly the urban-vegetation areas and the open-land areas. Their predicted EC is around 10% dS/m for non-saline urban soil, about 25% dS/m for low salinity urban-vegetation soil, approximately 30% to 75% dS/m, respectively, for moderate to high salinity soils. SSSI-2 based semi-empirical salinity models was able to differentiate the high salinity versus extreme salinity in areas where both exist and was very accurate to highlight the pure salt where SSSI-1 has reach saturation for both salinity classes. In conclusion, reliable salinity map was produced using the model based on SSSI-2 and OLI sensor data that allows a better characterization of the soil salinity problem in an Arid Environment.展开更多
By applying bromide ion as tracer, the channeling flow has been quantitatively described in saline rice soil and alkaline soil of Da'an City, Jilin Province of China. Breakthrough curves of bromide ion in the saline ...By applying bromide ion as tracer, the channeling flow has been quantitatively described in saline rice soil and alkaline soil of Da'an City, Jilin Province of China. Breakthrough curves of bromide ion in the saline rice soils after 1-year cultivation and 5-year cultivation and alkaline soil have been attained. Results show that the rice cultivation practice can improve the alkaline soil structure, however, it can accelerate the development of channeling flow pathway. Therefore, the channeling flow pathway has been developed widely in saline rice soil, but rarely in the alkaline soil. Three models of convection-dispersion equation (CDE), transfer functional model (TFM) and Back-Progation Network (BP Network) were used to simulate the transportation process of bromide ion. The peaks of probability density function of saline rice soil are higher with left skewed feature compared with that of the alkaline soil. It shows that the TIM and CDE can simulate the transportation process of the bromide ion in saline rice soil after 5-year cultivation, however, some deviation exists when it was used to simulate transportation process of bromide ion in saline rice soil after 1-year cultivation and alkaline soil; BP network can effectively simulate transportation process of bromide ion in both saline rice soil and alkaline soil.展开更多
The Ord River Irrigation Area (ORIA) is located within northern Western Australia near the Northern Territory border. Since the beginning of irrigated agriculture in the ORIA the groundwater levels have been continuou...The Ord River Irrigation Area (ORIA) is located within northern Western Australia near the Northern Territory border. Since the beginning of irrigated agriculture in the ORIA the groundwater levels have been continuously rising and are now close to the soil surface in some parts of ORIA in northern Western Australia. The groundwater is now saline throughout most of the ORIA and soil salinity risks are high where the watertables are shallow. This research evaluated irrigation and salinity management strategies for sugarcane and maize crops grown over deep and shallow, non-saline and saline watertables in the ORIA. The LEACHC model, calibrated using field data, was used to predict the impacts of various irrigation management strategies on water use and salt accumulation in the root zone. This study concluded that irrigation application equal to 100% of total fortnightly pan evaporation applied at 14 day intervals was a good irrigation strategy for the maize grown over a deep watertable area. This strategy would require around 11 ML/ha of irrigation water per growing season. Irrigation application equal to 75% of total fortnightly pan evaporation, applied every fortnight during first half of the growing season, and 75% of total weekly pan evaporation, applied on a weekly basis during second half of the growing season, would be the best irrigation strategy if it is feasible to change the irrigation interval from 14 to seven days. This irrigation strategy is predicted to have minimal salinity risks and save around 40% irrigation water. The best irrigation strategy for sugarcane grown on Cununurra clay over a deep watertable area would be irrigation application equal to 50% of the total fortnightly pan evaporation, applied every fortnight during first quarter of the growing season, and irrigation application amounts equal to 100% of total weekly pan evaporation, applied every week during rest of the season. The model predicted no soil salinity risks from this irrigation strategy. The best irrigation strategy for sugarcane over a non-saline, shallow watertable of one or two m depth would be irrigation application amounts equal to 50% of total fortnightly pan evaporation applied every fortnight. In the case of a saline watertable the same irrigation strategy was predicted to the best with respect to water use efficiency but will have high salinity risks without any drainage management.展开更多
Two models have been developed for the evaluation and prediction of salinity changes (chloride concentration;ppm;[Cl]) in Lake Kinneret. They are: 1) RM, which is based on the Salt balance and hydrological budget of t...Two models have been developed for the evaluation and prediction of salinity changes (chloride concentration;ppm;[Cl]) in Lake Kinneret. They are: 1) RM, which is based on the Salt balance and hydrological budget of the lake;2) GM which is based on the geo-hydrological regional properties of Kinneret’s geological structure. The concept of both is partly different: RM is correlating reduction of runoffs to salinity elevation and GM relates salt flux to the aquifer yield and the impact of lake water level is neglected. Long term statistical analyses justify support to GM, excluding conditions of heavy floods. This paper is a combination of a supplemental extended temporal study and a models review. Practical conclusions on Kinneret hydrological management within a frame of constrains aimed at prevention of salinity and eutrophication increase are presented.展开更多
The prediction of water temperature and salinity in coastal areas is one of the essential tasks in water quality control and management. This paper takes a refined forecasting model of water temperature and salinity i...The prediction of water temperature and salinity in coastal areas is one of the essential tasks in water quality control and management. This paper takes a refined forecasting model of water temperature and salinity in coastal areas as a basic target. Based on the Navier-Stokes equation and k-epsilon turbulence model, taking the characteristics of coastal areas into account, a refined model for water temperature and salinity in coastal areas has been developed to simulate the seasonal variations of water temperature and salinity fields in the Hakata Bay, Japan. The model takes into account the effects of a variety of hydrodynamic and meteorological factors on water temperature and salinity. It predicts daily fluctuations in water temperature and salinity at different depths throughout the year. The model has been calibrated well against the data set of historical water temperature and salinity observations in the Hakata Bay, Japan.展开更多
Generally one dimensional (l-D) empirical salinity intrusion model is limited to natural alluvial estuary. However, this study attempts to investigate its ability to model a sheltered alluvial estuary of the Terengg...Generally one dimensional (l-D) empirical salinity intrusion model is limited to natural alluvial estuary. However, this study attempts to investigate its ability to model a sheltered alluvial estuary of the Terengganu River in Malaysia. The constructed breakwater at the mouth of the river shelters the estuary from direct influence of the open sea. The salinity density along the estuary was collected during the wet and dry seasons for scenarios before and after the constructed breakwater. Moreover, the freshwater discharges, tidal elevations and bathymetry data were also measured as model inputs. A good fit was demonstrated between simulated and observed variables, namely salinity distribution and intrusion length for both scenarios. Thus, the results show that 1-D empirical salinity model can be utilized for sheltered estuarine condition at the Terengganu Estuary, but with an appropriate determination of an initial point. Furthermore, it was observed that the salinity intrusion in the study area is largely dependent on the freshwater discharge rather than tidal elevation fluctuations. The scale of the salinity intrusion length in the study area is proportional to the river discharge of the -1/2 power. It was appeared that the two lines of the 1-D empirical salinity model and discharge power based equation fitted well to each other, with the average predicted minimum freshwater discharge of 150 m^3/s is going to be required to maintain acceptable salinity levels during high water slack (HWS) near the water intake station, which is located at 10.63 km from river mouth.展开更多
The vertical salinity structure in the Bohai As and the Huanghai Sea have typical self-similar characters. However, horizontal salinity distribution is influenced by advection, horizontal diffusion, river discharge,et...The vertical salinity structure in the Bohai As and the Huanghai Sea have typical self-similar characters. However, horizontal salinity distribution is influenced by advection, horizontal diffusion, river discharge,etc. By using observed sea salinity data, a similarity function of vertical salinity profiles of the Bohai Sea and the Huanghai Sea has been constructed. On the basis of vertical integrated equations of motion and equation of continuity, and governing equations about the distribution of 3 characteristic factors (surface salinity Ss, bottom salinity SH, and thickness of upper homogeneous layer h), and combined with the similarity function, a quasithree-dimensional numerical model of salinity structure bas ben developed. In the model, the comprehensive effects of sea surface wind stress and heat influx, advection, diffusion, entrainment, bottom as well as lateral eddy mixture are taken into consideration. It is shown that the numerical model is more practical and the results of the trial prediction are satisfactory展开更多
The cooling of the Cenozoic, including the Miocene epoch, was punctuated by many geologically abrupt warming and cooling episodes— strong deviations from the cooling trend with time span of ten to hundred thousands o...The cooling of the Cenozoic, including the Miocene epoch, was punctuated by many geologically abrupt warming and cooling episodes— strong deviations from the cooling trend with time span of ten to hundred thousands of years. Our working hypothesis is that some of those warming episodes at least partially might have been caused by dynamics of the Antarctic Ice Sheet, which, in turn, might have caused strong changes of sea surface salinity in the Miocene Southern Ocean. Feasibility of this hypothesis is explored in a series of offline-coupled ocean-atmosphere computer experiments. The results suggest that relatively small and geologically short-lived changes in freshwater balance in the Southern Ocean could have significantly contributed to at least two prominent warming episodes in the Miocene. Importantly, the scenario-based experiments also suggest that the Southern Ocean was more sensitive to the salinity changes in the Miocene than today, which can attributed to the opening of the Central American Isthmus as a major difference between the Miocene and the present-day ocean-sea geometry.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 50339030 and 90202001).
文摘Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to obtain the crop water sensitivity index, the salinity sensitivity index, and other parameters. Using data collected during 35 years to calculate the 10-day mean precipitation and evaporation, the variation in soil salinity concentrations and in the yields of winter wheat and cotton were simulated for 49 irrigation scheduling that were combined from 7 irrigation schemes over 3 irrigation dates and 7 salinity concentrations of saline irrigation water (fresh water and 6 levels of saline water). Comparison of predicted results with irrigation data obtained from a large area of the field showed that the model was valid and reliable. Based on the analysis of the investment cost of the irrigation that employed deep tube wells or shallow tube wells, a saline water irrigation schedule and a corresponding strategy for groundwater development and utilization were proposed. For wheat or cotton, if the salinity concentration was higher than 7.0 g L-1 in groundwater, irrigation was needed with only fresh water; if about 5.0 g L-1, irrigation was required twice with fresh water and once with saline water; and if not higher than 3.0 g L-1, irrigation could be solely with saline water.
文摘Saline intrusion into marine sewage ouffalls will greatly decrease the efficiency of sewage disposal. In order to investigate the mechanisms of this flow, in this paper, a three-dimensional numerical model based on FVM (Finite Volume Method) is established, The RNG κ-ε model is selected for turbulence modeling. The time-averaged vohtme fraction equations are introduced to simulate the stratification and inteffaeial exchange of sewage and seawater in outfalls. Validity of the established three-dimensional numerical model is evaluated by comparisons of numerical results with experimental data. With this three-dimensional numerical model, the internal flow characteristics in ouffalls for different sewage discharges are simulated. The results indicate that for a low sewage discharge, saline circulates in the outfall due to intrusion and both the inflowing momentum and the inteffaeial turbulent mixing are important mechanisms to extrude the saline. For a high sewage discharge, saline intrusion could be avoided. The inflow momentum is the main mechanism to extrude the saline and the inteffacial turbulent mixing is nut important relatively. Even at a high sewage discharge, the saline wedge would be retained in the main ouffall pipe after the risers are purged. It takes a long time for this saline wedge to be extruded by interracial turbulent mixing.
文摘In the Saloum region of central-western Senegal, water needs are essentially met by tapping an underground aquifer associated with the sandy-clay formations of the Continental Terminal, in contact with both the ocean to the west and the highly saline waters of the Saloum River to the north. In this estuarine and deltaic zone with its very low relief, the hydraulic loads in the water tables are generally close to zero or even negative, creating a reversal of the natural flow and encouraging saline intrusion into this system, which makes it very vulnerable. This study concerns the implementation of a numerical model of saline intrusion to provide a better understanding of the vulnerability of the water table by analyzing the variability of the freshwater/saltwater interface. The Modflow-2005 code is used to simulate saline intrusion using the SWI2 module, coupled with the GRASS (Geographic Resources Analysis Support System) software under the Linux operating system with the steep interface approach. The probable expansion of the wedge is studied in three scenarios, taking into account its position relative to the bedrock at 1 m, 5 m and 10 m. Simulations carried out under imposed potential and river conditions, based on variations in groundwater reserves using two effective porosity values, 10−1 and 10−2, show that the water table is highly vulnerable in the northwest sector. The probable expansion of the wedge increases as the storage coefficient decreases and is more marked with river conditions in the areas surrounding the Saloum River, reaching 6 km with a probability of 1. The probability of the wedge reaching a certain degree of expansion decreases from 1 to 0.5, and then cancels out as it moves inland. The probable position of the wedge is limited to 500 m or even 1 km depending on the corner around the coast to the southwest and in the southern zone. This modelling, carried out under natural conditions, will be developed further, taking into account climatic parameters and pumping from wells and boreholes.
基金supported by the SB RAS Interdisciplinary Integration project 110by the RFBR grant 13-0500032by program to improve the competitiveness of Tomsk State University
文摘1 Introduction The attractiveness of Shaazgai-Nuur Soda Lake(pH9.2-9.4)as an alternative metal source is explained by the high concentration of dissolved uranium(~1 mg/l)due to the location of water drainage territory within the Tsagan-
基金This research was supported by the National Key Research and Development Program of China(Grant No.2018YFC0809605)the National Natural Science Foundation of China(Grant Nos.41230630,41601074)+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-DQC015)Science and Technology Plan Project of Tibet(XZ201801-GB-07).
文摘A series of saline soil-related problems,including salt expansion and collapse,frost heave and thaw settlement,threaten the safety of the road traffic and the built infrastructure in cold regions.This article presents a comprehensive review of the physical and mechanical properties,salt migration mechanisms of saline soil in cold environment,and the countermeasures in practice.It is organized as follows:(1)The basic physical characteristics;(2)The strength criteria and constitutive models;(3)Water and salt migration characteristics and mechanisms;and(4)Countermeasures of frost heave and salt expansion.The review provides a holistic perspective for recent progress in the strength characteristics,mechanisms of frost heave and salt expansion,engineering countermeasures of saline soil in cold regions.Future research is proposed on issues such as the effects of salt erosion on concrete and salt corrosion of metal under the joint action of evaporation and freeze-thaw cycles.
基金Supported by National Key R&D Program of China(2016YFC0502006)Major Science and Technology Projects of Tibet(Z2016C01G01/02)
文摘The research aimed to analyze changes in photosynthetic characteristics of Paeonia ludlowii under saline-alkali stress, and annual seedlings of P. ludlowii were taken as the materials. Photoresponse process of P. ludlowii leaves under saline-alkali stress was simulated, and different models were used to fit photoresponse curve. The results showed that P n of P. ludlowii leaves showed the trend of first rising and then declining with PAR increased under saline-alkali stress;both G s and T r showed a rising trend with PAR increased;C i showed the trend of first declining and then rising with PAR increased. Photoresponse curve fitted by modified rectangular hyperbolic model had the best effect, and it was the optimal fitting model. P. ludlowii could adapt to saline-alkali stress in lower concentration, showing that P. ludlowii could be introduced and cultivated in saline-alkali land at a lower level.
文摘The most important task in leaching practices is assessment of water quantity required for leaching of saline and saline-sodic soils. Therefore, reliable estimation of the required leaching water quantity is vital for reducing soil salinity to a desirable level. The present study aimed to investigate desodification of saline and sodic soils in central area of Khuzestan Province. Consequently, a large area of 3216 ha with S4A3 salinity/sodicity class in Khuzestan, Iran, was selected to obtain the required data. This experiment was conducted with two treatments and tree replicates. In the first treatment, the experiment was conducted by applying just 100 cm water depth in four 25 cm intervals. In the second treatment, 5000 kg/ha Sulfuric Acid was applied prior to salt leaching together with leaching water. The intermittent ponding method was conducted with double rings in a rectangular array. The required physical and chemical analyses were performed on the collected data. The leaching water was supplied from Shotait River. Four mathematical models were applied to the collected experimental data to derive a suitable empirical model. The results for large scale applications indicated that the proposed logarithmic model can estimate the capital leaching requirement much than the previously proposed models.
基金supported by the National Natural Science Foundation of China(No.41075030,41106004,41106159 and 41206013)the Ocean Public Welfare Science Research Project,State Oceanic Administration,People's Republic of China(No.201005019)
文摘In this study, we mainly introduce two salinity parameterization schemes used in Sea Ice Simulator (SIS), that is, isosaline scheme and salinity profile scheme. Comparing the equation of isosaline scheme with that of salinity profile scheme, we found that there was one different term between the two schemes named the salinity different term. The thermodynamic effect of the salinity difference term on sea ice thickness and sea ice concentration showed that: in the freezing processes from November to next May, the sea ice temperature could rise on the influence of the salinity difference term and restrain sea ice freezing; at the first melting phase from June to August, the upper ice melting rate was faster than the lower ice melting rate. Then sea ice temperature could rise and accelerate the sea ice melting; at the second melting phase from September to October, the upper ice melting rate was slower than the lower ice melting rate, then sea ice temperature could decrease and restrain sea ice melting. However, the effect of the salinity difference term on the sea ice thickness and sea ice concentration was weak. To analyze the impacts of the salinity different term on Arctic sea ice thickness and sea ice concentration, we also designed several experiments by introducing the two salinity parameterizations to the ice-ocean coupled model, Modular Ocean Model (MOM4), respectively. The simulated results confirmed the previous results of formula derivation.
文摘The main source of water in Gaza Strip is the shallow coastal aquifer. It is extremely deteriorated in terms of salinity which influenced by many variables. Studying the relation between these variables and salinity is often a complex and nonlinear process, making it suitable to model by Artificial Neural Networks (ANN). Initially, it is assumed that the salinity (represented by chloride concentration, mg/l) may be affected by some variables as: recharge rate, abstraction, abstraction average rate, life time and aquifer thickness. Data were extracted from 56 municipal wells, covering the area of Gaza Strip. After a number of modeling trials, the best neural network was determined to be Multilayer Perceptron network (MLP) with four layers: an input layer of 6 neurons, first hidden layer with 10 neurons, second hidden layer with 7 neurons and the output layer with 1 neuron which gives the final chloride concentration. The ANN model generated very good results depending on the high correlation between the observed and simulated values of chloride concentration. The correlation coefficient (r) was 0.9848. The high value of (r) showed that the simulated chloride concentration values using the ANN model were in very good agreement with the observed chloride concentration which mean that ANN model is useful and applicable for groundwater salinity modeling. ANN model was successfully utilized as analytical tool to study influence of the input variables on chloride concentration. It proved that chloride concentration in groundwater is reduced by decreasing abstraction, abstraction average rate and life time. Furthermore, it is reduced by increasing recharge rate and aquifer thickness.
基金Supported by the National Natural Science Foundation of China (Nos. 40776047, 90511005)the National Basic Research Program of China (973 Project) (No. 2010CB428705)
文摘From 1997 to 2000, four field surveys were conducted in the East China Sea (ECS) (23°30'-33°00'N, 118°30'-128°00'E). A field data yield density model was used to determine the optimal salinities for 19 dominant copepod species to establish the relationship between surface salinities and abundance of those species. In addition, ecological groups of the copepods were classified based on optimal salinity and geographical distribution. The results indicate that the yield density model is suitable for determining the relationship between salinity and abundance. Cosmocalanus darwini, Euchaeta rimana, Pleuromamma gracilis, Rhincalanus cornutus, Scolecithrix danae and Pareucalanus attenuatus were determined as oceanic species, with optimal salinities of 〉34.0. They were stenohaline and mainly distributed in waters influenced by the Kuroshio or Taiwan warm current. Temora discaudata, T. stylifera and Canthocalanus pauper were nearshore species with optimal salinities of 〈33.0 and most abundant in coastal waters. The remaining 10 species, including Undinula vulgaris and Subeucalanus suberassus, were offshore species, with optimal salinity ranging from 33.0-34.0. They were widely distributed in nearshore, offshore and oceanic waters but mainly in the mixed water of the ECS.
基金supported by the National Natural Science Foundation of China (41601068, 31602001, 41230630)the Young Scholars Development Fund of Southwest Petroleum University (201599010104)the Scientific Research Starting Project of Southwest Petroleum University (2015QHZ025)
文摘Salt expansion in sulfate saline soils that are widely distributed in northwestern China causes serious infrastructural damages under low-temperature conditions. However, the mechanism of salt expansion under low temperatures is not clear. In this study, we conducted a series of cooling experiments combined with salt crystallization to study this mechanism, and employed an ionic model to calculate the supersaturation ratio of the solution. During the experiments, the strength and the process of salt expansion were examined under different cooling rates and various crystal morphologies. The relationship between temperature and supersaturation ratio under transient conditions was also considered. Results indicate that the initial supersaturation ratio of a sodium sulfate solution is closely related to environmental conditions, and that this ratio decreases with slowing the cooling rates and stabilizing the crystal forms. Higher initial supersaturation ratios lead to an increased non-steady-state zone, resulting in less salt expansion. On the other hand, chloride ion content has a distinct influence on the crystallization supersaturation ratio of the sodium sulfate solution, and higher chloride ion content can inhibit salt expansion in sodium saline soils. These findings help explain salt expansion mechanisms in complex conditions such as seasonally frozen soils, and thus help search for improved methods of preventing salt expansion in sulfate saline soils.
基金supported by the Special Funds for Guiding Local Scientific and Technological Development by The Central Government(22ZY1QA005)the Science and Technology Program of Gansu Province"Outstanding Doctoral Students Project"(22JR5RA325)+3 种基金"Innovation Star"Funding Project for Outstanding Graduate Students of Gansu Province(2022CXZX-528)the Science and Technology Project of Gansu Province(21YF5GA050)Education Department of Gansu Province Industrial Support Plan Project(2021CYZC-28)Transport Department of Gansu Province Science and Technology R&D Projects(No.2021-12).
文摘Salinization and desertification are closely related to water-salt migration caused by a temperature gradient.Based on the Darcy Law of unsaturated soils,the law of energy conservation and the law of mass conservation,the thermal-water-salt coupling mathematical model of unsaturated frozen saline soil was established.The model considered the latent heat of phase change,crystallization impedance,crystallization consumption and complete precipitation of solute crystallization in ice.In order to verify the rationality of the model,the unidirectional freezing test of unsaturated saline soil was carried out in an open system with no-pressure water supplement to obtain the spatial distribution of temperature,moisture and salt in the saline soil.Finally,numerical simulations are implemented with the assistance of COMSOL Multiphysics.Validation of the model is illustrated by comparisons between the simulation and experimental data.The results demonstrated that the temperature within saline soil changes with time and can be divided into three stages,namely quick freezing stage,transitional stage and stable stage.The water and salt contents in the freezing zone are layered,with peak values at the freezing front.The coupled model could reveal the heat-mass migration mechanism of unsaturated frozen saline soil and dynamically describe the freezing depth and the movement law of the freezing front,ice and salt crystal formation mechanism,and the change law of thermal conductivity and permeability coefficient.
文摘Salt-affected soils, caused by natural or human activities, are a common environmental hazard in semi-arid and arid landscapes. Excess salts in soils affect plant growth and production, soil and water quality and, therefore, increase soil erosion and land degradation. This research investigates the performance of five different semi-empirical predictive models for soil salinity spatial distribution mapping in arid environment using OLI sensor image data. This is the first attempt to test remote sensing based semi-empirical salinity predictive models in this area: the Kingdom of Bahrain. To achieve our objectives, OLI data were standardized from the atmosphere interferences, the sensor radiometric drift, and the topographic and geometric distortions. Then, the five semi-empirical predictive models based on the Normalized Difference Salinity Index (NDSI), the Salinity Index-ASTER (SI-ASTER), the Salinity Index-1 (SI-1), the Soil Salinity and Sodicity Index-1 and Index-2 (SSSI-1 and SSSI-2), developed for slight and moderate salinity in agricultural land, were implemented and applied to OLI image data. For validation purposes, a fieldwork was organized and different important spots-locations representing different salinity levels were visited, photographed, and localized using an accurate GPS (σ ≤ ±30 cm). Based on this a priori knowledge of the soil salinity, six validation sites were selected to reflect non-saline, low, moderate, high and extreme salinity classes, descriptive statistics extracted from polygons and/or transects over these sites were used. The obtained results showed that the models based on NDSI, SI-1 and SI-ASTER all failed to detect salinity bounds for both extreme salinity (Sabkhah) and non-saline conditions. In Fact, NDSI and SI-ASTER gave respectively only 35% dS/m and 25% dS/m in extreme salinity validation site, while SI-1 and SI-ASTER indicated 38% dS/m and 39% dS/m in non-saline validation site. Therefore, these three models were deemed inadequate for the study site. However, both SSSI-1 and SSSI-2 allowed a detection of the previous salinity bounds and furthermore described similarly and correctly the urban-vegetation areas and the open-land areas. Their predicted EC is around 10% dS/m for non-saline urban soil, about 25% dS/m for low salinity urban-vegetation soil, approximately 30% to 75% dS/m, respectively, for moderate to high salinity soils. SSSI-2 based semi-empirical salinity models was able to differentiate the high salinity versus extreme salinity in areas where both exist and was very accurate to highlight the pure salt where SSSI-1 has reach saturation for both salinity classes. In conclusion, reliable salinity map was produced using the model based on SSSI-2 and OLI sensor data that allows a better characterization of the soil salinity problem in an Arid Environment.
基金Under the auspices of the Key Innovation Project of Chinese Academy of Sciences (No. KZCX1-SW-19-02)
文摘By applying bromide ion as tracer, the channeling flow has been quantitatively described in saline rice soil and alkaline soil of Da'an City, Jilin Province of China. Breakthrough curves of bromide ion in the saline rice soils after 1-year cultivation and 5-year cultivation and alkaline soil have been attained. Results show that the rice cultivation practice can improve the alkaline soil structure, however, it can accelerate the development of channeling flow pathway. Therefore, the channeling flow pathway has been developed widely in saline rice soil, but rarely in the alkaline soil. Three models of convection-dispersion equation (CDE), transfer functional model (TFM) and Back-Progation Network (BP Network) were used to simulate the transportation process of bromide ion. The peaks of probability density function of saline rice soil are higher with left skewed feature compared with that of the alkaline soil. It shows that the TIM and CDE can simulate the transportation process of the bromide ion in saline rice soil after 5-year cultivation, however, some deviation exists when it was used to simulate transportation process of bromide ion in saline rice soil after 1-year cultivation and alkaline soil; BP network can effectively simulate transportation process of bromide ion in both saline rice soil and alkaline soil.
文摘The Ord River Irrigation Area (ORIA) is located within northern Western Australia near the Northern Territory border. Since the beginning of irrigated agriculture in the ORIA the groundwater levels have been continuously rising and are now close to the soil surface in some parts of ORIA in northern Western Australia. The groundwater is now saline throughout most of the ORIA and soil salinity risks are high where the watertables are shallow. This research evaluated irrigation and salinity management strategies for sugarcane and maize crops grown over deep and shallow, non-saline and saline watertables in the ORIA. The LEACHC model, calibrated using field data, was used to predict the impacts of various irrigation management strategies on water use and salt accumulation in the root zone. This study concluded that irrigation application equal to 100% of total fortnightly pan evaporation applied at 14 day intervals was a good irrigation strategy for the maize grown over a deep watertable area. This strategy would require around 11 ML/ha of irrigation water per growing season. Irrigation application equal to 75% of total fortnightly pan evaporation, applied every fortnight during first half of the growing season, and 75% of total weekly pan evaporation, applied on a weekly basis during second half of the growing season, would be the best irrigation strategy if it is feasible to change the irrigation interval from 14 to seven days. This irrigation strategy is predicted to have minimal salinity risks and save around 40% irrigation water. The best irrigation strategy for sugarcane grown on Cununurra clay over a deep watertable area would be irrigation application equal to 50% of the total fortnightly pan evaporation, applied every fortnight during first quarter of the growing season, and irrigation application amounts equal to 100% of total weekly pan evaporation, applied every week during rest of the season. The model predicted no soil salinity risks from this irrigation strategy. The best irrigation strategy for sugarcane over a non-saline, shallow watertable of one or two m depth would be irrigation application amounts equal to 50% of total fortnightly pan evaporation applied every fortnight. In the case of a saline watertable the same irrigation strategy was predicted to the best with respect to water use efficiency but will have high salinity risks without any drainage management.
文摘Two models have been developed for the evaluation and prediction of salinity changes (chloride concentration;ppm;[Cl]) in Lake Kinneret. They are: 1) RM, which is based on the Salt balance and hydrological budget of the lake;2) GM which is based on the geo-hydrological regional properties of Kinneret’s geological structure. The concept of both is partly different: RM is correlating reduction of runoffs to salinity elevation and GM relates salt flux to the aquifer yield and the impact of lake water level is neglected. Long term statistical analyses justify support to GM, excluding conditions of heavy floods. This paper is a combination of a supplemental extended temporal study and a models review. Practical conclusions on Kinneret hydrological management within a frame of constrains aimed at prevention of salinity and eutrophication increase are presented.
基金The project was financially supported by the National Natural Science Foundation of China(Grant No.59779023,No.59839330)
文摘The prediction of water temperature and salinity in coastal areas is one of the essential tasks in water quality control and management. This paper takes a refined forecasting model of water temperature and salinity in coastal areas as a basic target. Based on the Navier-Stokes equation and k-epsilon turbulence model, taking the characteristics of coastal areas into account, a refined model for water temperature and salinity in coastal areas has been developed to simulate the seasonal variations of water temperature and salinity fields in the Hakata Bay, Japan. The model takes into account the effects of a variety of hydrodynamic and meteorological factors on water temperature and salinity. It predicts daily fluctuations in water temperature and salinity at different depths throughout the year. The model has been calibrated well against the data set of historical water temperature and salinity observations in the Hakata Bay, Japan.
文摘Generally one dimensional (l-D) empirical salinity intrusion model is limited to natural alluvial estuary. However, this study attempts to investigate its ability to model a sheltered alluvial estuary of the Terengganu River in Malaysia. The constructed breakwater at the mouth of the river shelters the estuary from direct influence of the open sea. The salinity density along the estuary was collected during the wet and dry seasons for scenarios before and after the constructed breakwater. Moreover, the freshwater discharges, tidal elevations and bathymetry data were also measured as model inputs. A good fit was demonstrated between simulated and observed variables, namely salinity distribution and intrusion length for both scenarios. Thus, the results show that 1-D empirical salinity model can be utilized for sheltered estuarine condition at the Terengganu Estuary, but with an appropriate determination of an initial point. Furthermore, it was observed that the salinity intrusion in the study area is largely dependent on the freshwater discharge rather than tidal elevation fluctuations. The scale of the salinity intrusion length in the study area is proportional to the river discharge of the -1/2 power. It was appeared that the two lines of the 1-D empirical salinity model and discharge power based equation fitted well to each other, with the average predicted minimum freshwater discharge of 150 m^3/s is going to be required to maintain acceptable salinity levels during high water slack (HWS) near the water intake station, which is located at 10.63 km from river mouth.
文摘The vertical salinity structure in the Bohai As and the Huanghai Sea have typical self-similar characters. However, horizontal salinity distribution is influenced by advection, horizontal diffusion, river discharge,etc. By using observed sea salinity data, a similarity function of vertical salinity profiles of the Bohai Sea and the Huanghai Sea has been constructed. On the basis of vertical integrated equations of motion and equation of continuity, and governing equations about the distribution of 3 characteristic factors (surface salinity Ss, bottom salinity SH, and thickness of upper homogeneous layer h), and combined with the similarity function, a quasithree-dimensional numerical model of salinity structure bas ben developed. In the model, the comprehensive effects of sea surface wind stress and heat influx, advection, diffusion, entrainment, bottom as well as lateral eddy mixture are taken into consideration. It is shown that the numerical model is more practical and the results of the trial prediction are satisfactory
文摘The cooling of the Cenozoic, including the Miocene epoch, was punctuated by many geologically abrupt warming and cooling episodes— strong deviations from the cooling trend with time span of ten to hundred thousands of years. Our working hypothesis is that some of those warming episodes at least partially might have been caused by dynamics of the Antarctic Ice Sheet, which, in turn, might have caused strong changes of sea surface salinity in the Miocene Southern Ocean. Feasibility of this hypothesis is explored in a series of offline-coupled ocean-atmosphere computer experiments. The results suggest that relatively small and geologically short-lived changes in freshwater balance in the Southern Ocean could have significantly contributed to at least two prominent warming episodes in the Miocene. Importantly, the scenario-based experiments also suggest that the Southern Ocean was more sensitive to the salinity changes in the Miocene than today, which can attributed to the opening of the Central American Isthmus as a major difference between the Miocene and the present-day ocean-sea geometry.