This research investigates the mechanism of increased salinity tolerance of ectomycorrhizal fungiinoculated P. sylvestris var. mongolica to provide a theoretical basis for the application of the fungus in saline soils...This research investigates the mechanism of increased salinity tolerance of ectomycorrhizal fungiinoculated P. sylvestris var. mongolica to provide a theoretical basis for the application of the fungus in saline soils.Growth effects due to inoculation of seedlings with Suillus luteus(a symbiotic ectomycorrhizal fungus), were determined in four kinds of saline–alkali soils. Growth and physiological indicators, including photosynthetic characteristics, plant height, biomass, photosynthetic pigments,catalase(CAT) and superoxide dismutase(SOD) enzyme levels, and malondialdehyde(MDA), an organic marker for oxidative stress, and soluble protein levels were determined. Mycorrhizal colonization rate decreased with increasing saline–alkalinity and growth of inoculated seedlings was significantly enhanced. Biomass and chlorophyll contents also increased significantly. SOD and CAT activities were higher than in non-inoculated seedlings. However, MDA content decreased in inoculatedseedlings. Soluble protein content did not increase significantly. Inoculation with a symbiotic ectomycorrhizal fungus could enhance the saline–alkali tolerance of P. sylvestris var. mongolica. Growth and physiological performance of inoculated seedlings were significantly better than that of uninoculated seedlings. The results indicate that inoculated P. sylvestris var. mongolica seedlings may be useful in the improvement of saline–alkali lands.展开更多
The potted Leymus chinensis seedlings were treated with saline-alkali solution of six different(from Ⅰ to Ⅵ) concentrations. The results demonstrate that the betaine content and Betaine-aldehyde dehydrogenase(BAD...The potted Leymus chinensis seedlings were treated with saline-alkali solution of six different(from Ⅰ to Ⅵ) concentrations. The results demonstrate that the betaine content and Betaine-aldehyde dehydrogenase(BADH: EC 1.2.1.8) activities have a direct relation with increased stressing time in the same treatment; both exhibit a single peak with increasing the concentration of saline-alkali solution, and number V shows the highest value. The BADH gene of Leyrnus chinensis was cloned by RT-PCR and RACE technology and was designated as LcBADH. The cDNA sequence of LcBADH was 1774bp including the open reading frame(ORF) of 1521bp(coding 506 amino acids). The vector of prokaryotic expression was constructed by inserting the LcBADH gene fragmcnt into pET30a(+) and transformed into E. coli BL21(DE3). The result of SDS-PAGE shows that the idio-protein with a molecular mass of 56.78 kDa was effectively expressed in the recombinant bacteria induced by isopropyl fl-D-thiogalactoside(IPTG).展开更多
Saline–alkaline(SA) stress is characterized by high salinity and high alkalinity(high p H), which severely inhibit plant growth and cause huge losses in crop yields worldwide. Here we show that a moderate elevation o...Saline–alkaline(SA) stress is characterized by high salinity and high alkalinity(high p H), which severely inhibit plant growth and cause huge losses in crop yields worldwide. Here we show that a moderate elevation of endogenous abscisic acid(ABA) levels by RNAi-mediated suppression of Os ABA8 ox1(Os ABA8 ox1-kd), a key ABA catabolic gene, significantly increased tolerance to SA stress in rice plants. We produced Os ABA8 ox1-kd lines in two different japonica cultivars, Dongdao 4 and Nipponbare. Compared with nontransgenic control plants(WT), the Os ABA8 ox1-kd seedlings accumulated 25.9%–55.7% higher levels of endogenous ABA and exhibited reduced plasmalemma injury, ROS accumulation and Na;/K;ratio, and higher survival rates, under hydroponic alkaline conditions simulated by 10, 15, and 20 mmol L-1 of Na;CO;. In pot trials using SA field soils of different alkali levels(p H 7.59, 8.86, and 9.29), Os ABA8 ox1–kd plants showed markedly higher seedling survival rates and more vigorous plant growth, resulting in significantly higher yield components including panicle number(85.7%–128.6%), spikelets per panicle(36.9%–61.9%), branches(153.9%–236.7%), 1000–kernel weight(20.0%–28.6%), and percentage of filled spikelets(96.6%–1340.8%) at harvest time. Under severe SA soil conditions(p H = 9.29, EC = 834.4 μS cm-1),Os ABA8 ox1-kd lines showed an 194.5%–1090.8% increase in grain yield per plant relative to WT plants.These results suggest that suppression of Os ABA8 ox1 to increase endogenous ABA levels provides a new molecular approach for improving rice yield in SA paddies.展开更多
Neutral black soil was mixed with strong saline-alkali soil in different weight ratios, then physiological indexes during seed germination and seedling growth in soil of different ratios and the corresponding leaching...Neutral black soil was mixed with strong saline-alkali soil in different weight ratios, then physiological indexes during seed germination and seedling growth in soil of different ratios and the corresponding leaching liquor treatments were observed to explore effect of saline-alkali stress on oat seed germination and seedling growth, and analyze tolerance of oat to saline-alkali soil. The results showed that germination ability of oat seeds reduced with the increasing saline-alkali stress, salt injury index increased and seedling growth was inhibited. Effect of different saline-alkali stresses on germination ability of oat seeds showed difference, and effect of leaching liquor treatment on oat seed germination was stronger than that of soil treatment.展开更多
The vacuolar proton pump ATPase(V-H^+-ATPase), which is a multi-subunit membrane protein complex, plays a major role in the activation of ion and nutrient transport and has been suggested to be involved in several ...The vacuolar proton pump ATPase(V-H^+-ATPase), which is a multi-subunit membrane protein complex, plays a major role in the activation of ion and nutrient transport and has been suggested to be involved in several physiological processes, such as cell expansion and salt tolerance. In this study, three genes encoding V-H^+-ATPase subunits B(Sc VHA-B, Gen Bank: JF826506), C(Sc VHA-C, Gen Bank: JF826507) and H(Sc VHA-H, Gen Bank: JF826508) were isolated from the halophyte Suaeda corniculata. The transcript levels of Sc VHA-B, Sc VHA-C and Sc VHA-H were increased by salt, drought and saline-alkali treatments. V-H^+-ATPase activity was also examined under salt, drought and saline-alkali stresses. The results showed that V-H^+-ATPase activity was correlated with salt, drought and saline-alkali stress. Furthermore, V-H^+-ATPase subunits B, C and H(Sc VHA-B, Sc VHA-C and Sc VHA-H) from S. corniculata were introduced separately into the alfalfa genome. The transgenic alfalfa was verified by Southern and Northern blot analysis. During salt and saline-alkali stresses, transgenic lines carrying the B, C and H subunits had higher germination rates than the wild type(WT). More free proline, higher superoxide dismutase(SOD) activity and lower malondialdehyde(MDA) levels were detected in the transgenic plants under salt and saline-alkali treatments. Moreover, the Sc VHA-B transgenic lines showed greater tolerance to salt and saline-alkali stresses than the WT. These results suggest that overexpression of Sc VHA-B, Sc VHA-C and Sc VHA-H improves tolerance to salt and saline-alkali stresses in transgenic alfalfa.展开更多
Plant Dna JA proteins act as molecular chaperones in response to environmental stressors.The purpose of this study was to characterize the function and regulatory mechanisms of Dna JA genes in soybean.Gene expression ...Plant Dna JA proteins act as molecular chaperones in response to environmental stressors.The purpose of this study was to characterize the function and regulatory mechanisms of Dna JA genes in soybean.Gene expression profiles in various soybean tissues at various stages of development indicated that Gm Dna JAs function in the coordination of stress and plant hormone responses.Gm Dna JA6 was identified as a candidate regulator of saline and alkaline stress resistance and Gm Dna JA6 overexpression lines showed increased soybean saline and alkaline tolerance.Dna J interacted with Hsp70,and Gm Hsp70 increased the saline and alkaline tolerance of plants with chimeric soybean hairy roots.展开更多
Abiotic stress confers serious damage to the photosynthetic machinery,often resulting in plant growth inhibition.Hypothetical chloroplast open reading frame 3(Ycf3)-interacting protein 1(Y3IP1)is a nucleus-encoded thy...Abiotic stress confers serious damage to the photosynthetic machinery,often resulting in plant growth inhibition.Hypothetical chloroplast open reading frame 3(Ycf3)-interacting protein 1(Y3IP1)is a nucleus-encoded thylakoid protein and plays an essential role in the assembly of photosystem I.The full-length cDNA over-expresser(FOX)gene-hunting system is an approach using systemically generated gain-of-function mutants.Among the FOX-rice lines,a line CE175 overexpressing rice Y3IP1gene(Os Y3IP1)displayed less inhibition of root growth under saline(NaCl)stress.The expression of Os Y3IP1 was up-regulated under saline and alkaline(Na2CO3)stresses in the rice variety Kitaake.After saline and alkaline treatments,transgenic Kitaake overexpressing OsY3IP1-GFP(OsY3IP1-GFPox/Kit)displayed higher levels of chlorophyll content compared to Kitaake.Under the stress conditions,the maximum quantum yield of photosystem II photochemistry levels was higher in OsY3IP1-GFPox/Kit than in Kitaake.The increased tolerance conferred by OsY3IP1 overexpression correlated with reduced reactive oxygen species accumulation.Our data provide new insights into the possible role of OsY3IP1 in the pathway suppressing photooxidative damage under stress conditions.These features can be further exploited to improve saline and alkaline tolerances of rice plants in future.展开更多
The research aimed to analyze changes in photosynthetic characteristics of Paeonia ludlowii under saline-alkali stress, and annual seedlings of P. ludlowii were taken as the materials. Photoresponse process of P. ludl...The research aimed to analyze changes in photosynthetic characteristics of Paeonia ludlowii under saline-alkali stress, and annual seedlings of P. ludlowii were taken as the materials. Photoresponse process of P. ludlowii leaves under saline-alkali stress was simulated, and different models were used to fit photoresponse curve. The results showed that P n of P. ludlowii leaves showed the trend of first rising and then declining with PAR increased under saline-alkali stress;both G s and T r showed a rising trend with PAR increased;C i showed the trend of first declining and then rising with PAR increased. Photoresponse curve fitted by modified rectangular hyperbolic model had the best effect, and it was the optimal fitting model. P. ludlowii could adapt to saline-alkali stress in lower concentration, showing that P. ludlowii could be introduced and cultivated in saline-alkali land at a lower level.展开更多
[Objective] The aim was to study on effects of heavy metals and saline-alkali on growth, physiology and biochemistry of Orychophragmus violaceus. [Method] Taken Orychophragmus violaceus as materials, growth, physiolog...[Objective] The aim was to study on effects of heavy metals and saline-alkali on growth, physiology and biochemistry of Orychophragmus violaceus. [Method] Taken Orychophragmus violaceus as materials, growth, physiology and biochemistry were explored under stress of saline-alkali and heavy metals (light, moderate and severe saline-alkali, Pb, Pb + Cd, light saline-alkali + Pb, moderate saline-alkali + Pb, severe saline-alkali + Pb, light saline-alkali + Pb + Cd, moderate saline-alkali + Pb + Cd and severe saline-alkali + Pb + Cd) with control group set. [Result] Light stress of saline-alkali had little effect on membrane permeability, as follows: MDA contents in leaves and root systems declined by 25.6% and 9.0% compared with control group; Pb (500 mg/L) stress promoted synthetization of photosynthetic pigments, as follows: chlorophyll a and b and carotenoid increased by 0.86%, 0.69% and 6.25% than those of control group; combined stresses of Pb and Cd destroyed synthetization of photosynthetic pigments, among which carotenoid was more sensitive; under combined stresses of saline-alkali, Pb and Cd, POD and SOD activities, soluble saccharides and Pro content all increased and activities of POD and SOD in root system were both higher than those in leaves. [Conclusion] Orychophragmus violaceus is with resistance against light combined stresses of saline-alkali and Pb (500 mg/L).展开更多
A pot experiment was conducted to examine the effects of a phosphate solubilizing bacterium(PSB),Enterobacteria sp.EnHy-401,on the availability of insoluble accumulative phosphorus(P)and growth of wheat(Triticum ...A pot experiment was conducted to examine the effects of a phosphate solubilizing bacterium(PSB),Enterobacteria sp.EnHy-401,on the availability of insoluble accumulative phosphorus(P)and growth of wheat(Triticum Ningmai No.13)plants in sterile saline soil.Our results showed that the strain EnHy-401 had the ability to activate the insoluble accumulated phosphorus in saline soil and enhanced nutrient uptake efficiency by wheat plants,then conferred resistance in wheat plants to salt stress and resulted in a significant growth increase.In saline soil inoculated with Enterobacteria sp.EnHy-401,available phosphorus and exchangeable calcium was increased from 6.4 mg/kg and 1 162 mg/kg to 10.3 mg/kg and 1 214 mg/kg,respectively.Wheat seedling grown in soil inoculated with the EnHy-401 strain increased shoot weight by 28.1% and root weight by 14.6% when compared to the control.P,Ca,K and Mg contents in shoots increased 34.4%,36.3%,31.5%,and 6.3% compared to the control,respectively.the fact that the increases in available P,biomass P,and Ca2+ concentration in saline soil treated with PSB Enterobacter sp.EnHy-401 inocula,and high relativity between the P,Ca,K,and Mg content in wheat tissue and dry matter indicated that PSB Enterobacter sp.EnHy-401 suppressed the adverse effect of salinity stress in plants through nutrient(P and Ca)supply and nutrient(K and Mg)uptake enhancement.The phosphate solubilizing activity of Enterobacteria sp.EnHy-401 and the amelioration of salt stress on wheat plants by the strain varied with the salinity levels and content of organic matter in the saline soil.展开更多
[Objective] The aim of this study was to reveal the evolvement structures,especially the crystal characteristics of Chenopodium album L.under saline stress,so as to providing the first-hand data for utilizing biologic...[Objective] The aim of this study was to reveal the evolvement structures,especially the crystal characteristics of Chenopodium album L.under saline stress,so as to providing the first-hand data for utilizing biological techniques to control saline environment.[Method] Employing high definition display method of plant crystal structure and paraffin-section method,we performed a comparative study on the evolvement structures of C.album growing in high salinity areas in the coast of Egyptian Red Sea and common salinity areas in the grasslands in Changling County of Jilin Province.[Result] The regionally distributed crystal and the developed assimilating tissue of C.album are the key structural characteristics to antagonize the saline stress during the evolving process.Stem cortex of C.album growing in both the high salinity areas in coast of Egyptian Red Sea and common salinity areas in the grasslands in Changling County of Jilin Province has similar discontinuous crystal rings.Assimilating tissue in C.album growing in high salinity areas is highly developed than that in common salinity environment.Comparative analysis indicates that the developed stratum corneum and marrow is also the key structural characteristics to antagonize the saline stress.[Conclusion] Our results provide a valuable approach to study the salt-tolerance mechanism of plant using structural botanical techniques,i.e.,crystal may become the identification characteristics of salt tolerant plant.展开更多
Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinit...Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.展开更多
The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO\+-\-3\|N and effective ...The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO\+-\-3\|N and effective phosphorus (EP) in ponds; (2) the changes of COD were not evident, just effective in later period after PSB application; (3) PSB application could decrease the contents of NH\+-\-4\|N (NH\-3\|N), NO\+-\-2\|N ; (4) PSB application could improve the structure of the effective nitrogen (EN) and EP, stimulate the growth of phytoplankton, and increase primary productivity, and finally increase the commercial profits of ponds because of the increase of EP and the decrease of EN contents; (5) the effect exerting speed of PSB was slower, but the effect sustaining time was longer; (6) the appropriate concentration of PSB application in saline alkali wetland ponds was 10×10 -6 mg/L, one time effective period was more than 15 days. So PSB was an efficient water quality improver in saline alkali ponds.展开更多
Saline alkali soil can cause physiological drought on crops,so only some salinity tolerant crops can grow in saline alkali soil.Biochar can increase the utilize efficiency of nutrient and the water retention of the so...Saline alkali soil can cause physiological drought on crops,so only some salinity tolerant crops can grow in saline alkali soil.Biochar can increase the utilize efficiency of nutrient and the water retention of the soil,and affect the growth of the plant.In this research,four different proportion of biochar was added in five different levels of saline-alkali soil for pot culture experiment.The pH of the soil increases as the proportion of biochar increase in same saline-alkali level soil,while the EC decrease as the proportion of biochar increase.The germination rate of wheat seeds varies as the different of soil's saline-alkali level.Notable among these results is the germination of wheat seeds in the serious saline-alkali soil without biochar added is 0,while in 45%biochar added in serious saline-alkali soil,the germination rate get to as high as 48.9%.Also,biochar improve the growth of wheat seedling,while for mild saline alkali soil and normal soil.Biochar had no obvious effect on the growth of wheat seedling.展开更多
The net photosynthetic rate of flag leaves and influencing factors under saline sodic soil conditions were investigated at the full heading stage of rice. The net photosynthetic rate of rice leaves showed a double-pea...The net photosynthetic rate of flag leaves and influencing factors under saline sodic soil conditions were investigated at the full heading stage of rice. The net photosynthetic rate of rice leaves showed a double-peak curve in a day in both non-saline sodic and saline sodic soil treatments. The first peak of the net photosynthetic rate appeared at 9:00-10:00 and 9:00 in the saline sodic and non-saline sodic soil treatments, respectively, whereas the second peak both at 14:00. The midday depression of the net photosynthetic rate always appeared regardless of non-saline sodic or saline sodic soil conditions. In addition, the net photosynthetic rate significantly decreased in all day under saline sodic conditions compared with that under non-saline sodic conditions. Some differences were observed in correlation characters between the net photosynthetic rate and all influencing factors during 9:00-13:00. Under non-saline sodic conditions, the diurnal changes of the net photosynthetic rate in a day were mainly caused by stomatal conductance, and the limitation value and the stomatal factors served as determinants; whereas under saline sodic stress, the diurnal changes of the net photosynthetic rate in a day were mainly caused by non stomatal factors including light intensity and air temperature.展开更多
This work presents a reference system overview to improve the efficiency of biological improvement of saline-alkali soil developed during the last thirty years, ranging from connotation, general methods and species, s...This work presents a reference system overview to improve the efficiency of biological improvement of saline-alkali soil developed during the last thirty years, ranging from connotation, general methods and species, soil desalination, soil structure, soil organic content, microbial flora, enzyme activity, yield and economic benefits. The reference system presented is divided into three main groups: suitable varieties, suitable cultivation measures, and a comprehensive evaluation system.There has been a lot of research on biological improvement of saline alkali soil, but these studies are very fragmented and lack a comprehensive standard system. Also, there is a lack of practical significance, particularly with regard to optimal species, densities and times of sowing for particular regions. On the other hand, the corresponding cultivation measure is very important. Therefore, a reference system plays an important role to the effect of biological improvement of saline alkali soil.展开更多
Salinity is a severe abiotic stress that affects plant growth and yield.Salinity stress activates jasmonate(JA)signaling in Arabidopsis thaliana,but the underlying molecular mechanism remains to be elucidated.In this ...Salinity is a severe abiotic stress that affects plant growth and yield.Salinity stress activates jasmonate(JA)signaling in Arabidopsis thaliana,but the underlying molecular mechanism remains to be elucidated.In this study,we confirmed the activation of JA signaling under saline conditions and demonstrated the importance of the CORONATINE INSENSITIVE1(COI1)-mediated JA signaling for this process.Phenotypic analyses reflected the negative regulation of JASMONATE ZIM-DOMAIN(JAZ)repressors during salinity stress-enhanced JA signaling.Mechanistic analyses revealed that JAZ proteins physically interact with ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTOR1(ABF1),AREB1/ABF2,ABF3,and AREB2/ABF4,which belong to the basic leucine zipper(bZIP)transcription factor family and respond to salinity stress.Analyses on the ABF3 overexpression plants and ABF mutants indicated the positive role of ABF3 in regulating JA signaling under saline condition.Furthermore,ABF3 overexpression partially recovered the JA-related phenotypes of JAZ1-D3A plants.Moreover,ABF3 was observed to indirectly activate ALLENE OXIDE SYNTHASE(AOS)transcription,but this activation was inhibited by JAZ1.In addition,ABF3 competitively bind to JAZ1,thereby decreasing the interaction between JAZ1 and MYC2,which is the master transcription factor controlling JA signaling.Collectively,our findings have clarified the regulatory effects of ABF3 on JA signaling and provide new insights into how JA signaling is enhanced following an exposure to salinity stress.展开更多
Taking west Jilin Province as an example, this paper put forward the assessment index of salinization, and based on it, the authors present the distribution characteristics of saline-alkali soil in the 1980s and the 1...Taking west Jilin Province as an example, this paper put forward the assessment index of salinization, and based on it, the authors present the distribution characteristics of saline-alkali soil in the 1980s and the 1990s in west Jilin and analyze its physical and chemical properties in detail. The developing tendency of salinization was also inferred by comparing the saline-alkali soil of the 1980s with that of the 1990s. Finally, the natural and human factors leading to salinization are analyzed.展开更多
Crassostrea nippona is a valuable species for aquaculture with considerable potential for commercial oyster farming.However,it is vulnerable to changes in salinity levels in coastal environments.In this study,we inves...Crassostrea nippona is a valuable species for aquaculture with considerable potential for commercial oyster farming.However,it is vulnerable to changes in salinity levels in coastal environments.In this study,we investigated the impacts of low salinity stress on the physiological responses of C.nippona.The hemolymph osmolality could not reach equilibrium with the surrounding environmental osmolality that was below salinity 15 within 1 week.Cell expansion,cellular valuocation,decrease of gill cilia,increased apoptotic cells under salinity 10 were observed through microscopic techniques.The activities of immunity-related enzymes,including alkaline phosphatase(AKP),acid phosphatase(ACP),superoxide dismutase(SOD),and catalase(CAT),were significantly increased at salinity 10 compared with the control group.These findings highlight the vulnerability of C.nippona to low salinity stress and provide insights into the physiological changes in response to fluctuating salinity levels.Understanding these physiological responses is crucial for effective aquaculture management and developing strategies to mitigate the negative impacts of low salinity stress on C.nippona populations in coastal areas.展开更多
The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region conta...The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region containing 327 bp,and an open reading frame of 2298 bp.ChCLC 7 has 96.8%and 92.1%homology with CLC 7 of Crassostrea gigas and Crassostrea virginica,respectively,and it was clustered with CLC 7 of C.gigas and C.virginica.QRT-PCR showed that ChCLC 7 was expressed in all eight tissues,with the highest in adductor muscle and second in gill.The ChCLC 7 expression pattern in gill was altered significantly under high salinity stress with an overall upward and then downward trend.After RNA interference,the expression of ChCLC 7 and survival rate of oyster under high salinity stress was reduced significantly,and so did the concentration of hemolymph chloride ion in 48-96 h after RNA interference.We believed that ChCLC 7 could play an important role in osmoregulation of C.hongkongensis by regulating Cl^(-)transport.This study provided data for the analysis of molecular mechanism against oyster salinity stress.展开更多
基金supported by the National Natural Science Foundation of China(31800542,31670649,31200484,31170597)Natural Science Foundation of Liaoning(20180550893)。
文摘This research investigates the mechanism of increased salinity tolerance of ectomycorrhizal fungiinoculated P. sylvestris var. mongolica to provide a theoretical basis for the application of the fungus in saline soils.Growth effects due to inoculation of seedlings with Suillus luteus(a symbiotic ectomycorrhizal fungus), were determined in four kinds of saline–alkali soils. Growth and physiological indicators, including photosynthetic characteristics, plant height, biomass, photosynthetic pigments,catalase(CAT) and superoxide dismutase(SOD) enzyme levels, and malondialdehyde(MDA), an organic marker for oxidative stress, and soluble protein levels were determined. Mycorrhizal colonization rate decreased with increasing saline–alkalinity and growth of inoculated seedlings was significantly enhanced. Biomass and chlorophyll contents also increased significantly. SOD and CAT activities were higher than in non-inoculated seedlings. However, MDA content decreased in inoculatedseedlings. Soluble protein content did not increase significantly. Inoculation with a symbiotic ectomycorrhizal fungus could enhance the saline–alkali tolerance of P. sylvestris var. mongolica. Growth and physiological performance of inoculated seedlings were significantly better than that of uninoculated seedlings. The results indicate that inoculated P. sylvestris var. mongolica seedlings may be useful in the improvement of saline–alkali lands.
基金Supported by the National Natural Science Foundation of China(Nos30590382 and 30570273)
文摘The potted Leymus chinensis seedlings were treated with saline-alkali solution of six different(from Ⅰ to Ⅵ) concentrations. The results demonstrate that the betaine content and Betaine-aldehyde dehydrogenase(BADH: EC 1.2.1.8) activities have a direct relation with increased stressing time in the same treatment; both exhibit a single peak with increasing the concentration of saline-alkali solution, and number V shows the highest value. The BADH gene of Leyrnus chinensis was cloned by RT-PCR and RACE technology and was designated as LcBADH. The cDNA sequence of LcBADH was 1774bp including the open reading frame(ORF) of 1521bp(coding 506 amino acids). The vector of prokaryotic expression was constructed by inserting the LcBADH gene fragmcnt into pET30a(+) and transformed into E. coli BL21(DE3). The result of SDS-PAGE shows that the idio-protein with a molecular mass of 56.78 kDa was effectively expressed in the recombinant bacteria induced by isopropyl fl-D-thiogalactoside(IPTG).
基金supported by National Key Research and Development Program of China(SQ2018YFD020224)Chinese Academy of Sciences STS Network Foundation(KFJ-SW-STS-141-01)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDA080X0X0X)the Foundation of Innovation team International Partner Program of Chinese Academy of Sciences(KZZD-EW-TZ-07-08)。
文摘Saline–alkaline(SA) stress is characterized by high salinity and high alkalinity(high p H), which severely inhibit plant growth and cause huge losses in crop yields worldwide. Here we show that a moderate elevation of endogenous abscisic acid(ABA) levels by RNAi-mediated suppression of Os ABA8 ox1(Os ABA8 ox1-kd), a key ABA catabolic gene, significantly increased tolerance to SA stress in rice plants. We produced Os ABA8 ox1-kd lines in two different japonica cultivars, Dongdao 4 and Nipponbare. Compared with nontransgenic control plants(WT), the Os ABA8 ox1-kd seedlings accumulated 25.9%–55.7% higher levels of endogenous ABA and exhibited reduced plasmalemma injury, ROS accumulation and Na;/K;ratio, and higher survival rates, under hydroponic alkaline conditions simulated by 10, 15, and 20 mmol L-1 of Na;CO;. In pot trials using SA field soils of different alkali levels(p H 7.59, 8.86, and 9.29), Os ABA8 ox1–kd plants showed markedly higher seedling survival rates and more vigorous plant growth, resulting in significantly higher yield components including panicle number(85.7%–128.6%), spikelets per panicle(36.9%–61.9%), branches(153.9%–236.7%), 1000–kernel weight(20.0%–28.6%), and percentage of filled spikelets(96.6%–1340.8%) at harvest time. Under severe SA soil conditions(p H = 9.29, EC = 834.4 μS cm-1),Os ABA8 ox1-kd lines showed an 194.5%–1090.8% increase in grain yield per plant relative to WT plants.These results suggest that suppression of Os ABA8 ox1 to increase endogenous ABA levels provides a new molecular approach for improving rice yield in SA paddies.
基金Sponsored by National Natural Science Foundation of China(31200419)Science and Technology Foundation of Jilin Education Department(2015-366)
文摘Neutral black soil was mixed with strong saline-alkali soil in different weight ratios, then physiological indexes during seed germination and seedling growth in soil of different ratios and the corresponding leaching liquor treatments were observed to explore effect of saline-alkali stress on oat seed germination and seedling growth, and analyze tolerance of oat to saline-alkali soil. The results showed that germination ability of oat seeds reduced with the increasing saline-alkali stress, salt injury index increased and seedling growth was inhibited. Effect of different saline-alkali stresses on germination ability of oat seeds showed difference, and effect of leaching liquor treatment on oat seed germination was stronger than that of soil treatment.
基金supported by the National Natural Science Foundation of China (31271746, 31401403, 31501366,31201237)
文摘The vacuolar proton pump ATPase(V-H^+-ATPase), which is a multi-subunit membrane protein complex, plays a major role in the activation of ion and nutrient transport and has been suggested to be involved in several physiological processes, such as cell expansion and salt tolerance. In this study, three genes encoding V-H^+-ATPase subunits B(Sc VHA-B, Gen Bank: JF826506), C(Sc VHA-C, Gen Bank: JF826507) and H(Sc VHA-H, Gen Bank: JF826508) were isolated from the halophyte Suaeda corniculata. The transcript levels of Sc VHA-B, Sc VHA-C and Sc VHA-H were increased by salt, drought and saline-alkali treatments. V-H^+-ATPase activity was also examined under salt, drought and saline-alkali stresses. The results showed that V-H^+-ATPase activity was correlated with salt, drought and saline-alkali stress. Furthermore, V-H^+-ATPase subunits B, C and H(Sc VHA-B, Sc VHA-C and Sc VHA-H) from S. corniculata were introduced separately into the alfalfa genome. The transgenic alfalfa was verified by Southern and Northern blot analysis. During salt and saline-alkali stresses, transgenic lines carrying the B, C and H subunits had higher germination rates than the wild type(WT). More free proline, higher superoxide dismutase(SOD) activity and lower malondialdehyde(MDA) levels were detected in the transgenic plants under salt and saline-alkali treatments. Moreover, the Sc VHA-B transgenic lines showed greater tolerance to salt and saline-alkali stresses than the WT. These results suggest that overexpression of Sc VHA-B, Sc VHA-C and Sc VHA-H improves tolerance to salt and saline-alkali stresses in transgenic alfalfa.
基金financially supported by Natural Science Foundation of Heilongjiang(TD2022C003,JJ2022YX0475)National Key Research and Development Program of China(2021YFD1201104-02-02,2021YFF1001202)+1 种基金Backbone of Young Talent Scholar Project of Northeast Agricultural University(to Ying Zhao)the National Natural Science Foundation of China(U20A2027,31971899,32272093,32272072)。
文摘Plant Dna JA proteins act as molecular chaperones in response to environmental stressors.The purpose of this study was to characterize the function and regulatory mechanisms of Dna JA genes in soybean.Gene expression profiles in various soybean tissues at various stages of development indicated that Gm Dna JAs function in the coordination of stress and plant hormone responses.Gm Dna JA6 was identified as a candidate regulator of saline and alkaline stress resistance and Gm Dna JA6 overexpression lines showed increased soybean saline and alkaline tolerance.Dna J interacted with Hsp70,and Gm Hsp70 increased the saline and alkaline tolerance of plants with chimeric soybean hairy roots.
基金supported by the National Research Foundation of South Korea(Grant Nos.NRF-2020R1A2C1007778 and 2015K2A2A4000129)。
文摘Abiotic stress confers serious damage to the photosynthetic machinery,often resulting in plant growth inhibition.Hypothetical chloroplast open reading frame 3(Ycf3)-interacting protein 1(Y3IP1)is a nucleus-encoded thylakoid protein and plays an essential role in the assembly of photosystem I.The full-length cDNA over-expresser(FOX)gene-hunting system is an approach using systemically generated gain-of-function mutants.Among the FOX-rice lines,a line CE175 overexpressing rice Y3IP1gene(Os Y3IP1)displayed less inhibition of root growth under saline(NaCl)stress.The expression of Os Y3IP1 was up-regulated under saline and alkaline(Na2CO3)stresses in the rice variety Kitaake.After saline and alkaline treatments,transgenic Kitaake overexpressing OsY3IP1-GFP(OsY3IP1-GFPox/Kit)displayed higher levels of chlorophyll content compared to Kitaake.Under the stress conditions,the maximum quantum yield of photosystem II photochemistry levels was higher in OsY3IP1-GFPox/Kit than in Kitaake.The increased tolerance conferred by OsY3IP1 overexpression correlated with reduced reactive oxygen species accumulation.Our data provide new insights into the possible role of OsY3IP1 in the pathway suppressing photooxidative damage under stress conditions.These features can be further exploited to improve saline and alkaline tolerances of rice plants in future.
基金Supported by National Key R&D Program of China(2016YFC0502006)Major Science and Technology Projects of Tibet(Z2016C01G01/02)
文摘The research aimed to analyze changes in photosynthetic characteristics of Paeonia ludlowii under saline-alkali stress, and annual seedlings of P. ludlowii were taken as the materials. Photoresponse process of P. ludlowii leaves under saline-alkali stress was simulated, and different models were used to fit photoresponse curve. The results showed that P n of P. ludlowii leaves showed the trend of first rising and then declining with PAR increased under saline-alkali stress;both G s and T r showed a rising trend with PAR increased;C i showed the trend of first declining and then rising with PAR increased. Photoresponse curve fitted by modified rectangular hyperbolic model had the best effect, and it was the optimal fitting model. P. ludlowii could adapt to saline-alkali stress in lower concentration, showing that P. ludlowii could be introduced and cultivated in saline-alkali land at a lower level.
文摘[Objective] The aim was to study on effects of heavy metals and saline-alkali on growth, physiology and biochemistry of Orychophragmus violaceus. [Method] Taken Orychophragmus violaceus as materials, growth, physiology and biochemistry were explored under stress of saline-alkali and heavy metals (light, moderate and severe saline-alkali, Pb, Pb + Cd, light saline-alkali + Pb, moderate saline-alkali + Pb, severe saline-alkali + Pb, light saline-alkali + Pb + Cd, moderate saline-alkali + Pb + Cd and severe saline-alkali + Pb + Cd) with control group set. [Result] Light stress of saline-alkali had little effect on membrane permeability, as follows: MDA contents in leaves and root systems declined by 25.6% and 9.0% compared with control group; Pb (500 mg/L) stress promoted synthetization of photosynthetic pigments, as follows: chlorophyll a and b and carotenoid increased by 0.86%, 0.69% and 6.25% than those of control group; combined stresses of Pb and Cd destroyed synthetization of photosynthetic pigments, among which carotenoid was more sensitive; under combined stresses of saline-alkali, Pb and Cd, POD and SOD activities, soluble saccharides and Pro content all increased and activities of POD and SOD in root system were both higher than those in leaves. [Conclusion] Orychophragmus violaceus is with resistance against light combined stresses of saline-alkali and Pb (500 mg/L).
基金Supported by Key Technologies R&D Program of Shanghai Municipal Agricultural Commission(X9810)~~
文摘A pot experiment was conducted to examine the effects of a phosphate solubilizing bacterium(PSB),Enterobacteria sp.EnHy-401,on the availability of insoluble accumulative phosphorus(P)and growth of wheat(Triticum Ningmai No.13)plants in sterile saline soil.Our results showed that the strain EnHy-401 had the ability to activate the insoluble accumulated phosphorus in saline soil and enhanced nutrient uptake efficiency by wheat plants,then conferred resistance in wheat plants to salt stress and resulted in a significant growth increase.In saline soil inoculated with Enterobacteria sp.EnHy-401,available phosphorus and exchangeable calcium was increased from 6.4 mg/kg and 1 162 mg/kg to 10.3 mg/kg and 1 214 mg/kg,respectively.Wheat seedling grown in soil inoculated with the EnHy-401 strain increased shoot weight by 28.1% and root weight by 14.6% when compared to the control.P,Ca,K and Mg contents in shoots increased 34.4%,36.3%,31.5%,and 6.3% compared to the control,respectively.the fact that the increases in available P,biomass P,and Ca2+ concentration in saline soil treated with PSB Enterobacter sp.EnHy-401 inocula,and high relativity between the P,Ca,K,and Mg content in wheat tissue and dry matter indicated that PSB Enterobacter sp.EnHy-401 suppressed the adverse effect of salinity stress in plants through nutrient(P and Ca)supply and nutrient(K and Mg)uptake enhancement.The phosphate solubilizing activity of Enterobacteria sp.EnHy-401 and the amelioration of salt stress on wheat plants by the strain varied with the salinity levels and content of organic matter in the saline soil.
基金Supported by Program from the Education Department of Jilin Prov-ince(2011191,2011359 )Natural Science Fund from Chang-chun Normal University~~
文摘[Objective] The aim of this study was to reveal the evolvement structures,especially the crystal characteristics of Chenopodium album L.under saline stress,so as to providing the first-hand data for utilizing biological techniques to control saline environment.[Method] Employing high definition display method of plant crystal structure and paraffin-section method,we performed a comparative study on the evolvement structures of C.album growing in high salinity areas in the coast of Egyptian Red Sea and common salinity areas in the grasslands in Changling County of Jilin Province.[Result] The regionally distributed crystal and the developed assimilating tissue of C.album are the key structural characteristics to antagonize the saline stress during the evolving process.Stem cortex of C.album growing in both the high salinity areas in coast of Egyptian Red Sea and common salinity areas in the grasslands in Changling County of Jilin Province has similar discontinuous crystal rings.Assimilating tissue in C.album growing in high salinity areas is highly developed than that in common salinity environment.Comparative analysis indicates that the developed stratum corneum and marrow is also the key structural characteristics to antagonize the saline stress.[Conclusion] Our results provide a valuable approach to study the salt-tolerance mechanism of plant using structural botanical techniques,i.e.,crystal may become the identification characteristics of salt tolerant plant.
基金financed by the National Key Research and Development Program,China(Grant Nos.2022YFE0113400 and 2022YFD1500402)National Natural Science Foundation of China(Grant No.32001466)+3 种基金Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology,China(Grant Nos.BE2022304 and BE2022305)Joints Funds of the National Natural Science Foundation of China(Grant No.U20A2022)Postdoctoral Research Foundation of China(Grant No.2020M671628)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.
文摘The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO\+-\-3\|N and effective phosphorus (EP) in ponds; (2) the changes of COD were not evident, just effective in later period after PSB application; (3) PSB application could decrease the contents of NH\+-\-4\|N (NH\-3\|N), NO\+-\-2\|N ; (4) PSB application could improve the structure of the effective nitrogen (EN) and EP, stimulate the growth of phytoplankton, and increase primary productivity, and finally increase the commercial profits of ponds because of the increase of EP and the decrease of EN contents; (5) the effect exerting speed of PSB was slower, but the effect sustaining time was longer; (6) the appropriate concentration of PSB application in saline alkali wetland ponds was 10×10 -6 mg/L, one time effective period was more than 15 days. So PSB was an efficient water quality improver in saline alkali ponds.
基金Supported by Natural Science Foundation of China(31200419)The Eleventh Five-Year Plan Science and Technology Foundation of Jilin Provincial Department of Education(2010-146)Natural Science Foundation of Changchun Normal University(2010-035)
文摘Saline alkali soil can cause physiological drought on crops,so only some salinity tolerant crops can grow in saline alkali soil.Biochar can increase the utilize efficiency of nutrient and the water retention of the soil,and affect the growth of the plant.In this research,four different proportion of biochar was added in five different levels of saline-alkali soil for pot culture experiment.The pH of the soil increases as the proportion of biochar increase in same saline-alkali level soil,while the EC decrease as the proportion of biochar increase.The germination rate of wheat seeds varies as the different of soil's saline-alkali level.Notable among these results is the germination of wheat seeds in the serious saline-alkali soil without biochar added is 0,while in 45%biochar added in serious saline-alkali soil,the germination rate get to as high as 48.9%.Also,biochar improve the growth of wheat seedling,while for mild saline alkali soil and normal soil.Biochar had no obvious effect on the growth of wheat seedling.
文摘The net photosynthetic rate of flag leaves and influencing factors under saline sodic soil conditions were investigated at the full heading stage of rice. The net photosynthetic rate of rice leaves showed a double-peak curve in a day in both non-saline sodic and saline sodic soil treatments. The first peak of the net photosynthetic rate appeared at 9:00-10:00 and 9:00 in the saline sodic and non-saline sodic soil treatments, respectively, whereas the second peak both at 14:00. The midday depression of the net photosynthetic rate always appeared regardless of non-saline sodic or saline sodic soil conditions. In addition, the net photosynthetic rate significantly decreased in all day under saline sodic conditions compared with that under non-saline sodic conditions. Some differences were observed in correlation characters between the net photosynthetic rate and all influencing factors during 9:00-13:00. Under non-saline sodic conditions, the diurnal changes of the net photosynthetic rate in a day were mainly caused by stomatal conductance, and the limitation value and the stomatal factors served as determinants; whereas under saline sodic stress, the diurnal changes of the net photosynthetic rate in a day were mainly caused by non stomatal factors including light intensity and air temperature.
基金project is supported by the National Key R&D Program of China (No. 2016YFC0501307)the Key R&D Program of Ningxia Hui Autonomous Region (No. 2018BBF23008)
文摘This work presents a reference system overview to improve the efficiency of biological improvement of saline-alkali soil developed during the last thirty years, ranging from connotation, general methods and species, soil desalination, soil structure, soil organic content, microbial flora, enzyme activity, yield and economic benefits. The reference system presented is divided into three main groups: suitable varieties, suitable cultivation measures, and a comprehensive evaluation system.There has been a lot of research on biological improvement of saline alkali soil, but these studies are very fragmented and lack a comprehensive standard system. Also, there is a lack of practical significance, particularly with regard to optimal species, densities and times of sowing for particular regions. On the other hand, the corresponding cultivation measure is very important. Therefore, a reference system plays an important role to the effect of biological improvement of saline alkali soil.
基金supported by the Natural Science Foundation of China(32270613,31922009,and 31870259)the Yunnan Fundamental Research Projects(202201AS070051,202001AV070009,2019FI006,202001AT070118,and 202101AW070005,202401AT070220)+1 种基金the CAS“Light of West China”Program(to X.H.)the Youth Innovation Promotion Association of the of Chinese Academy of Sciences(Y201973 and 2022399).
文摘Salinity is a severe abiotic stress that affects plant growth and yield.Salinity stress activates jasmonate(JA)signaling in Arabidopsis thaliana,but the underlying molecular mechanism remains to be elucidated.In this study,we confirmed the activation of JA signaling under saline conditions and demonstrated the importance of the CORONATINE INSENSITIVE1(COI1)-mediated JA signaling for this process.Phenotypic analyses reflected the negative regulation of JASMONATE ZIM-DOMAIN(JAZ)repressors during salinity stress-enhanced JA signaling.Mechanistic analyses revealed that JAZ proteins physically interact with ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTOR1(ABF1),AREB1/ABF2,ABF3,and AREB2/ABF4,which belong to the basic leucine zipper(bZIP)transcription factor family and respond to salinity stress.Analyses on the ABF3 overexpression plants and ABF mutants indicated the positive role of ABF3 in regulating JA signaling under saline condition.Furthermore,ABF3 overexpression partially recovered the JA-related phenotypes of JAZ1-D3A plants.Moreover,ABF3 was observed to indirectly activate ALLENE OXIDE SYNTHASE(AOS)transcription,but this activation was inhibited by JAZ1.In addition,ABF3 competitively bind to JAZ1,thereby decreasing the interaction between JAZ1 and MYC2,which is the master transcription factor controlling JA signaling.Collectively,our findings have clarified the regulatory effects of ABF3 on JA signaling and provide new insights into how JA signaling is enhanced following an exposure to salinity stress.
基金National Natural Science Foundation of China, No.49671077 Project of Jilin Provincial Committee for Science and Technology, No.
文摘Taking west Jilin Province as an example, this paper put forward the assessment index of salinization, and based on it, the authors present the distribution characteristics of saline-alkali soil in the 1980s and the 1990s in west Jilin and analyze its physical and chemical properties in detail. The developing tendency of salinization was also inferred by comparing the saline-alkali soil of the 1980s with that of the 1990s. Finally, the natural and human factors leading to salinization are analyzed.
基金supported by the National Key R&D Program of China(No.2022YFD2400305)the Earmarked Fund for Agriculture Seed Improvement Project of Shandong Province(Nos.2021ZLGX03,2022LZGCQY010 and 2021LZGC027)the China Agriculture Research System Project(No.CARS-49)。
文摘Crassostrea nippona is a valuable species for aquaculture with considerable potential for commercial oyster farming.However,it is vulnerable to changes in salinity levels in coastal environments.In this study,we investigated the impacts of low salinity stress on the physiological responses of C.nippona.The hemolymph osmolality could not reach equilibrium with the surrounding environmental osmolality that was below salinity 15 within 1 week.Cell expansion,cellular valuocation,decrease of gill cilia,increased apoptotic cells under salinity 10 were observed through microscopic techniques.The activities of immunity-related enzymes,including alkaline phosphatase(AKP),acid phosphatase(ACP),superoxide dismutase(SOD),and catalase(CAT),were significantly increased at salinity 10 compared with the control group.These findings highlight the vulnerability of C.nippona to low salinity stress and provide insights into the physiological changes in response to fluctuating salinity levels.Understanding these physiological responses is crucial for effective aquaculture management and developing strategies to mitigate the negative impacts of low salinity stress on C.nippona populations in coastal areas.
基金Supported by the Natural Science Foundation of Guangxi Province(Nos.2023 GXNSFAA 026503,2018 GXNSFBA281201)the Guangxi Key Research and Development Program(No.GuikeAB21196030)+3 种基金the Marine Science Guangxi First-Class Subject,Beibu Gulf University(No.DRC002)the Scientific Research and Technology Development Plan Project of Qinzhou(Nos.202014842,20223637)the Science and Technology Major Project of Guangxi Province(No.AA17204095-10)the Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation,Beibu Gulf University(Nos.2020ZB09,2020ZB04)。
文摘The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region containing 327 bp,and an open reading frame of 2298 bp.ChCLC 7 has 96.8%and 92.1%homology with CLC 7 of Crassostrea gigas and Crassostrea virginica,respectively,and it was clustered with CLC 7 of C.gigas and C.virginica.QRT-PCR showed that ChCLC 7 was expressed in all eight tissues,with the highest in adductor muscle and second in gill.The ChCLC 7 expression pattern in gill was altered significantly under high salinity stress with an overall upward and then downward trend.After RNA interference,the expression of ChCLC 7 and survival rate of oyster under high salinity stress was reduced significantly,and so did the concentration of hemolymph chloride ion in 48-96 h after RNA interference.We believed that ChCLC 7 could play an important role in osmoregulation of C.hongkongensis by regulating Cl^(-)transport.This study provided data for the analysis of molecular mechanism against oyster salinity stress.