[Objective]The research aimed to discuss the tolerance of Salix matsudana to single or compound heavy metals and provide theoretical basis for renovating polluted soil by heavy metals with woody plants.[Method]Using r...[Objective]The research aimed to discuss the tolerance of Salix matsudana to single or compound heavy metals and provide theoretical basis for renovating polluted soil by heavy metals with woody plants.[Method]Using root elongation method,the effects of heavy metal Cu^2+,Pb^2+,Zn^2+ and their mixed solution on the adventitious roots growth of S.matsudana cuttings were studied.[Result]The adventitious roots growth of S.matsudana cuttings was obviously affected by different concentrations of heavy metals solution.Adventitious roots of S.matsudana cuttings could not grow while the concentration of Cu^2+ was higher than 15 mg/L,the mixture solution concentration was higher than 20 mg/L and Zn^2+ concentration was higher than 30 mg/L.When the solution concentration reached 40 mg/L,adventitious roots of S.matsudana cuttings could grow only in Pb^2+ treatment group.With the increasing of the solution concentration,the number of adventitious roots of S.matsudana cuttings gradually decreased.In 5 mg/L Zn^2+ treatment group,the number of adventitious roots of S.matsudana cuttings was the most,the longest root length and average root length were the longest and the rooting rate was the highest.[Conclusion]The tolerance of S.matsudana to Pb^2+ was strongest and its tolerance to Cu^2+ was the weakest.The tolerance order of S.matsudana to three kinds of heavy metals and their mixed solution was as following:Pb^2+〉Zn^2+〉Cu^2++Pb^2++Zn^2+〉Cu^2+.展开更多
The microbial population in rotten living body of Salix matsudana caused by Trametes suaveolens (L.) was researched. 11 bacteria species (1 species of Bacillus, 2 species of Clostridium and 8 species of non-brood-cell...The microbial population in rotten living body of Salix matsudana caused by Trametes suaveolens (L.) was researched. 11 bacteria species (1 species of Bacillus, 2 species of Clostridium and 8 species of non-brood-cell bacteria), 1 species of Actinomyces that belongs to Lavendulac, 8 species of fungi and 6 species of Trichoderma were isolated from rotten trunk. The hyphae of Trametes suaveolens mainly existed between rotten sections and discoioration sections. In over-rotten section and healthy section the fungi (Trametes suaveolens) were not isolated. The microbes that lived in the discoloration section were the most in kinds and number and they were the pioneer microbes of wood rotting. Only after they dwelled in wood and eIiminated its rot-resistance,could wood-rotting fungi invade wood and caused wood-rotting.展开更多
Two new acyclic diterpene-g-lactones named hanliuine III (1) and hanliuine IV (2) were isolated from leaves of Salix matsudana (Chinese name 揾anliu?. Their structures were deduced from spectral data.
We used a salt-resistant poplar genotype Populus euphratica and two salt-sensitive genotypes, Populus 'popularis 35-44' (P. popularis) and the hybrid P. talassica Kom x (P. euphratica + Salix alba L.) to exami...We used a salt-resistant poplar genotype Populus euphratica and two salt-sensitive genotypes, Populus 'popularis 35-44' (P. popularis) and the hybrid P. talassica Kom x (P. euphratica + Salix alba L.) to examine genotypic differences in nutrient selectivity under NaCl stress. One-year-old seedlings of P. euphratica and one-year-old hardwood cuttings of P. popularis were used in a short-term study (24 hours), while in a long-term study, up to 4 weeks, two-year-old seedlings of P. euphratica and the hybrid P. talassica Kom x (P. euphratica + Salix alba L.) were compared. In the short-term study, K+ concentration in the xylem sap ([K+]xylem) of P. euphratica significantly increased after salt stress was initiated, and maintained 1-2 fold higher than control levels during the period of salt stress (24 hours). Xylem Ca2+ and Mg2+ concentrations ([Ca2+]xylem, [Mg2+]xylem) in P. euphratica resembled the pattern of K+ despite a lesser magnitude in elevation. However, [K+]xylem, [Ca2+]xylem and [Mg2+]xylem in P. popularis exhibited a transient increase at the beginning of salt treatment, thereafter, they all returned to control levels at 4 hours and no further rise was observed in the following hours. Xylem Na+/K+, Na+/Ca2+ and Na+/Mg2+ in P. popularis increased sharply upon NaCl stress and steadily reached the maximum at 24 hours. In contrast, xylem Na+/K+, Na+/Ca2+ and Na+/Mg2+ in NaCl-treated plants of P. euphratica did not significantly increase during the period of salt stress (24 hours). Noteworthy, Na+/K+ markedly declined after the onset of stress. These results suggest that P. euphratica had a higher nutrient selectivity in face of salinity. A same trend was observed in a 4-week study. Xylem Na+/K+, Na+/Ca2+ and Na+/Mg2+ in salinised plants of the hybrid abruptly increased after 4 days of stress, and then continuously increased to reach the highest level at day 8 or day 15. In comparison, the magnitude of Na+/K+, Na+/Ca2+ and Na+/Mg2+ elevation in the xylem of P. euphratica was much lower during the observation period. In conclusion, salt-tolerant genotype P. euphratica maintained a higher nutrient selectivity under saline stress, as compared to the two salt-sensitive genotypes. The high capacity for nutrient uptake and transport presumably contributes to the salt tolerance of P. euphratica in a longer term.展开更多
基金Supported by Natural Science Foundation of Anhui University(KJ2007B120)Doctor Foundation Projects of Anhui Agricultural University (WD2006-12)~~
文摘[Objective]The research aimed to discuss the tolerance of Salix matsudana to single or compound heavy metals and provide theoretical basis for renovating polluted soil by heavy metals with woody plants.[Method]Using root elongation method,the effects of heavy metal Cu^2+,Pb^2+,Zn^2+ and their mixed solution on the adventitious roots growth of S.matsudana cuttings were studied.[Result]The adventitious roots growth of S.matsudana cuttings was obviously affected by different concentrations of heavy metals solution.Adventitious roots of S.matsudana cuttings could not grow while the concentration of Cu^2+ was higher than 15 mg/L,the mixture solution concentration was higher than 20 mg/L and Zn^2+ concentration was higher than 30 mg/L.When the solution concentration reached 40 mg/L,adventitious roots of S.matsudana cuttings could grow only in Pb^2+ treatment group.With the increasing of the solution concentration,the number of adventitious roots of S.matsudana cuttings gradually decreased.In 5 mg/L Zn^2+ treatment group,the number of adventitious roots of S.matsudana cuttings was the most,the longest root length and average root length were the longest and the rooting rate was the highest.[Conclusion]The tolerance of S.matsudana to Pb^2+ was strongest and its tolerance to Cu^2+ was the weakest.The tolerance order of S.matsudana to three kinds of heavy metals and their mixed solution was as following:Pb^2+〉Zn^2+〉Cu^2++Pb^2++Zn^2+〉Cu^2+.
文摘The microbial population in rotten living body of Salix matsudana caused by Trametes suaveolens (L.) was researched. 11 bacteria species (1 species of Bacillus, 2 species of Clostridium and 8 species of non-brood-cell bacteria), 1 species of Actinomyces that belongs to Lavendulac, 8 species of fungi and 6 species of Trichoderma were isolated from rotten trunk. The hyphae of Trametes suaveolens mainly existed between rotten sections and discoioration sections. In over-rotten section and healthy section the fungi (Trametes suaveolens) were not isolated. The microbes that lived in the discoloration section were the most in kinds and number and they were the pioneer microbes of wood rotting. Only after they dwelled in wood and eIiminated its rot-resistance,could wood-rotting fungi invade wood and caused wood-rotting.
文摘Two new acyclic diterpene-g-lactones named hanliuine III (1) and hanliuine IV (2) were isolated from leaves of Salix matsudana (Chinese name 揾anliu?. Their structures were deduced from spectral data.
基金Foundation for the Author of National Excellent Doctoral Dissertation of PRC (Grant No. 200152)the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institution of MOE, PRC, the National Nat
文摘We used a salt-resistant poplar genotype Populus euphratica and two salt-sensitive genotypes, Populus 'popularis 35-44' (P. popularis) and the hybrid P. talassica Kom x (P. euphratica + Salix alba L.) to examine genotypic differences in nutrient selectivity under NaCl stress. One-year-old seedlings of P. euphratica and one-year-old hardwood cuttings of P. popularis were used in a short-term study (24 hours), while in a long-term study, up to 4 weeks, two-year-old seedlings of P. euphratica and the hybrid P. talassica Kom x (P. euphratica + Salix alba L.) were compared. In the short-term study, K+ concentration in the xylem sap ([K+]xylem) of P. euphratica significantly increased after salt stress was initiated, and maintained 1-2 fold higher than control levels during the period of salt stress (24 hours). Xylem Ca2+ and Mg2+ concentrations ([Ca2+]xylem, [Mg2+]xylem) in P. euphratica resembled the pattern of K+ despite a lesser magnitude in elevation. However, [K+]xylem, [Ca2+]xylem and [Mg2+]xylem in P. popularis exhibited a transient increase at the beginning of salt treatment, thereafter, they all returned to control levels at 4 hours and no further rise was observed in the following hours. Xylem Na+/K+, Na+/Ca2+ and Na+/Mg2+ in P. popularis increased sharply upon NaCl stress and steadily reached the maximum at 24 hours. In contrast, xylem Na+/K+, Na+/Ca2+ and Na+/Mg2+ in NaCl-treated plants of P. euphratica did not significantly increase during the period of salt stress (24 hours). Noteworthy, Na+/K+ markedly declined after the onset of stress. These results suggest that P. euphratica had a higher nutrient selectivity in face of salinity. A same trend was observed in a 4-week study. Xylem Na+/K+, Na+/Ca2+ and Na+/Mg2+ in salinised plants of the hybrid abruptly increased after 4 days of stress, and then continuously increased to reach the highest level at day 8 or day 15. In comparison, the magnitude of Na+/K+, Na+/Ca2+ and Na+/Mg2+ elevation in the xylem of P. euphratica was much lower during the observation period. In conclusion, salt-tolerant genotype P. euphratica maintained a higher nutrient selectivity under saline stress, as compared to the two salt-sensitive genotypes. The high capacity for nutrient uptake and transport presumably contributes to the salt tolerance of P. euphratica in a longer term.