The Lop Nur dry salt lake,Xinjiang province,is charactered by typical physiognomy salt-crust,located in39.6-41.3N.latitude and 89.6-91.4E.longitude.The thickness of salt-crust is about from 20 cm to 100 cm,and
Salt lakes are a mirror of climatic changes and provide holographic records of environmental changes of lakes. According to a study of geological hazards in typical salt lake areas in China and other regions, the auth...Salt lakes are a mirror of climatic changes and provide holographic records of environmental changes of lakes. According to a study of geological hazards in typical salt lake areas in China and other regions, the authors explain how geological hazards in salt lake areas are caused by natural agents and how humans can seek benefits, avoid hazards and reduce losses on the premise that they have monitored and mastered the trend of salt lake changes in advance and even can store flood and recharge water in lakes and extract saline resources. The climate in western China is probably turning from warm-dry to warm-moist. The authors analyze the change trend of salt lakes sensu lato (with salinity≥0.3 wt% (NaCl)eq) and salt lakes sensu stricto (with salinity ≥3.5 wt% (NaCl)eq) in China in such climatic conditions and distinguish three types of salt lake areas (i.e. lake water rising type, lake water falling type and lake water rising and unstable type) according to the characteristics of lake water rising and shrinking. In order to conform to the climatic and lake changes in China's salt lake areas, the authors propose to add and improve hydrological and meteorological observation stations and integrate observations with remote sensing monitoring in important salt lake areas and set up multidisciplinary and interdepartmental basic projects to monitor and study recent climatic and environmental changes in salt lake areas of western China. Moreover, it is necessary to build additional flood-control and drought-preventing water conservancy facilities in key salt lake areas and work out measures for ecological protection in salt lake areas. Full consideration should be given to the influence of flooding when building saltfields and implementing capital projects.展开更多
The Qaidam Basin is a large intermontane depression in Qinghai Province,China,which located on the northern margin of the Tibet plateau,and surrounded by the Qilian,Kunlun and Aljun mountains which rise to more than 5...The Qaidam Basin is a large intermontane depression in Qinghai Province,China,which located on the northern margin of the Tibet plateau,and surrounded by the Qilian,Kunlun and Aljun mountains which rise to more than 5000m.Some 27 salt lakes occur within the basin,occupying an area of approximately 1500 km2.Additionally,there are extensive areas of dry playas.Together,the playas and salt lakes cover about one quarter of the total basin area.Whereas the western展开更多
1 Introduction It is known that more than 300 lakes and lagoons are present in the Crimean Peninsula,which are divided depending on position to 7 groups:Perekop,Tarkhankut,Evpatoriyskaya,Khersonesskaya,lake on the mou...1 Introduction It is known that more than 300 lakes and lagoons are present in the Crimean Peninsula,which are divided depending on position to 7 groups:Perekop,Tarkhankut,Evpatoriyskaya,Khersonesskaya,lake on the mountainpastures,Kerch and Genicheskaya.Almost the all lakes,with the exception of the small freshwater lakes,which situated on mountain pastures of the Main ridge of展开更多
1 Introduction In the south of Eastern Transbaikalia in the border area with China and Mongolia,there are at least 300 saline without outlet lakes.They are confined to the semi-arid zone Daurian steppes with pronounce...1 Introduction In the south of Eastern Transbaikalia in the border area with China and Mongolia,there are at least 300 saline without outlet lakes.They are confined to the semi-arid zone Daurian steppes with pronounced continental salinization processes and are mostly located on the bottoms of the intermountain basins.Their origin is related to evaporative concentration of fresh waters lakes filling.展开更多
The order Diptera(Insecta)is one of animal groups most successful in the colonization of mineralized shallow aquatic and semiaquatic environments.At the same time,the taxonomic composition of Diptera,their role in
1 Introduction The salt lakes of the Crimea contain the practically inexhaustible sources of salts of sodium,magnesium,bromine and other chemical elements(Ponizovskii,1965),being the potential powerful raw materials b...1 Introduction The salt lakes of the Crimea contain the practically inexhaustible sources of salts of sodium,magnesium,bromine and other chemical elements(Ponizovskii,1965),being the potential powerful raw materials base for the展开更多
The study investigates the hydrogeochemical characteristics of some towns in the Abakaliki Basin, comprising, Ishiagu, Aka Eze, Amaseri, Afikpo and Okposi communities, with the aim of sourcing for portable water in th...The study investigates the hydrogeochemical characteristics of some towns in the Abakaliki Basin, comprising, Ishiagu, Aka Eze, Amaseri, Afikpo and Okposi communities, with the aim of sourcing for portable water in the area. The basin is underlain by Albian sediments, essentially shales, in the lowlands, which were affected by low-grade metamorphism that had produced slates. The highlands comprise basic intrusives from episodes of magmatism and metallic ore mineralisation. Injection of brines into the aquifer system and low, seasonal aquifer recharge from rainfall results in poor water quality in the area. The study analyzes the geochemical distribution in water sources in the area and identifies sources of pollutants to guide the better choice of portable water. Results of hydrogeochemical analysis of both surface and groundwater from the communities were compared with World Health Organization to identify portable water locations in the area. While the salt lake at Okposi is the main source of brine intrusion in the study area, the Pb/Zn mine at Ishiagu is the main source of mine-water pollution in the study area. Most chemical parameters, (especially Cl<sup>-</sup>, Na<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, SO<sub>4</sub><sup>2-</sup>, HCO<sub>3</sub><sup>-</sup>) maintain high concentrations within the salt lake area, with the values declining away from the salt lake. The main anthropogenic source of pollution in the area, especially at Ishiagu, is the indiscriminate surface mining of lead-zinc without proposer waste management practices. Possible sourcing for portable water in the study area includes a deep borehole at Ishiagu, away from lead-zinc intrusives. At the Okposi axis, searching for portable water in boreholes should target shallower aquifers that do not communicate with the deeper-seated brine zones, likewise targeting zones farther away from these brine-invaded areas. A controlled pumping rate could potentially ensure that the cone of depression was not low enough to reach the brine zone at depth. In addition, desalination could also potentially render the salt water drinkable if properly handled to eliminate the high concentration of salts in the water to the level of acceptable limit by the WHO. Based on the study, the best area to target for portable water in the study area is Afikpo, with most geochemical elements naturally occurring within WHO’s standard concentration while portable water could be harnessed in areas further away from mining sites, especially at deep groundwater.展开更多
文摘The Lop Nur dry salt lake,Xinjiang province,is charactered by typical physiognomy salt-crust,located in39.6-41.3N.latitude and 89.6-91.4E.longitude.The thickness of salt-crust is about from 20 cm to 100 cm,and
基金This study was supported by the National Natural Science Foundation of China grant 49833010Project of Special Funds for Public Interests Research of the Ministry of Science and Technology grant 2001DIA 10020.
文摘Salt lakes are a mirror of climatic changes and provide holographic records of environmental changes of lakes. According to a study of geological hazards in typical salt lake areas in China and other regions, the authors explain how geological hazards in salt lake areas are caused by natural agents and how humans can seek benefits, avoid hazards and reduce losses on the premise that they have monitored and mastered the trend of salt lake changes in advance and even can store flood and recharge water in lakes and extract saline resources. The climate in western China is probably turning from warm-dry to warm-moist. The authors analyze the change trend of salt lakes sensu lato (with salinity≥0.3 wt% (NaCl)eq) and salt lakes sensu stricto (with salinity ≥3.5 wt% (NaCl)eq) in China in such climatic conditions and distinguish three types of salt lake areas (i.e. lake water rising type, lake water falling type and lake water rising and unstable type) according to the characteristics of lake water rising and shrinking. In order to conform to the climatic and lake changes in China's salt lake areas, the authors propose to add and improve hydrological and meteorological observation stations and integrate observations with remote sensing monitoring in important salt lake areas and set up multidisciplinary and interdepartmental basic projects to monitor and study recent climatic and environmental changes in salt lake areas of western China. Moreover, it is necessary to build additional flood-control and drought-preventing water conservancy facilities in key salt lake areas and work out measures for ecological protection in salt lake areas. Full consideration should be given to the influence of flooding when building saltfields and implementing capital projects.
文摘The Qaidam Basin is a large intermontane depression in Qinghai Province,China,which located on the northern margin of the Tibet plateau,and surrounded by the Qilian,Kunlun and Aljun mountains which rise to more than 5000m.Some 27 salt lakes occur within the basin,occupying an area of approximately 1500 km2.Additionally,there are extensive areas of dry playas.Together,the playas and salt lakes cover about one quarter of the total basin area.Whereas the western
文摘1 Introduction It is known that more than 300 lakes and lagoons are present in the Crimean Peninsula,which are divided depending on position to 7 groups:Perekop,Tarkhankut,Evpatoriyskaya,Khersonesskaya,lake on the mountainpastures,Kerch and Genicheskaya.Almost the all lakes,with the exception of the small freshwater lakes,which situated on mountain pastures of the Main ridge of
基金supported by integrated project no. 38 of the Siberian Branch, Russian Academy of Sciences "Mineral lakes of Central Asia as archive of paleoclimatic records of high solution and renewal liquid ore"
文摘1 Introduction In the south of Eastern Transbaikalia in the border area with China and Mongolia,there are at least 300 saline without outlet lakes.They are confined to the semi-arid zone Daurian steppes with pronounced continental salinization processes and are mostly located on the bottoms of the intermountain basins.Their origin is related to evaporative concentration of fresh waters lakes filling.
基金supported by the Russian Foundation for Basic Research (grant no. 14-04-01139)supported by a travel grant from the Organizing Committee
文摘The order Diptera(Insecta)is one of animal groups most successful in the colonization of mineralized shallow aquatic and semiaquatic environments.At the same time,the taxonomic composition of Diptera,their role in
文摘1 Introduction The salt lakes of the Crimea contain the practically inexhaustible sources of salts of sodium,magnesium,bromine and other chemical elements(Ponizovskii,1965),being the potential powerful raw materials base for the
文摘The study investigates the hydrogeochemical characteristics of some towns in the Abakaliki Basin, comprising, Ishiagu, Aka Eze, Amaseri, Afikpo and Okposi communities, with the aim of sourcing for portable water in the area. The basin is underlain by Albian sediments, essentially shales, in the lowlands, which were affected by low-grade metamorphism that had produced slates. The highlands comprise basic intrusives from episodes of magmatism and metallic ore mineralisation. Injection of brines into the aquifer system and low, seasonal aquifer recharge from rainfall results in poor water quality in the area. The study analyzes the geochemical distribution in water sources in the area and identifies sources of pollutants to guide the better choice of portable water. Results of hydrogeochemical analysis of both surface and groundwater from the communities were compared with World Health Organization to identify portable water locations in the area. While the salt lake at Okposi is the main source of brine intrusion in the study area, the Pb/Zn mine at Ishiagu is the main source of mine-water pollution in the study area. Most chemical parameters, (especially Cl<sup>-</sup>, Na<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, SO<sub>4</sub><sup>2-</sup>, HCO<sub>3</sub><sup>-</sup>) maintain high concentrations within the salt lake area, with the values declining away from the salt lake. The main anthropogenic source of pollution in the area, especially at Ishiagu, is the indiscriminate surface mining of lead-zinc without proposer waste management practices. Possible sourcing for portable water in the study area includes a deep borehole at Ishiagu, away from lead-zinc intrusives. At the Okposi axis, searching for portable water in boreholes should target shallower aquifers that do not communicate with the deeper-seated brine zones, likewise targeting zones farther away from these brine-invaded areas. A controlled pumping rate could potentially ensure that the cone of depression was not low enough to reach the brine zone at depth. In addition, desalination could also potentially render the salt water drinkable if properly handled to eliminate the high concentration of salts in the water to the level of acceptable limit by the WHO. Based on the study, the best area to target for portable water in the study area is Afikpo, with most geochemical elements naturally occurring within WHO’s standard concentration while portable water could be harnessed in areas further away from mining sites, especially at deep groundwater.