期刊文献+
共找到176篇文章
< 1 2 9 >
每页显示 20 50 100
Overexpression of GmProT1 and GmProT2 increases tolerance to drought and salt stresses in transgenic Arabidopsis 被引量:5
1
作者 GUO Na XUE Dong +7 位作者 ZHANG Wei ZHAO Jin-ming XUE Chen-chen YAN Qiang XUE Jin-yan WANG Hai-tang ZHANG Yu-mei XING Han 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第8期1727-1743,共17页
financially supported by the Genetically Modified Organisms Breeding Major Projects of China (2014ZX08004);the National Natural Science Foundation of China (31301340);the Modern Agro-industry Technology Research S... financially supported by the Genetically Modified Organisms Breeding Major Projects of China (2014ZX08004);the National Natural Science Foundation of China (31301340);the Modern Agro-industry Technology Research System of China (CARS-004-PS10);the Program for Changjiang Scholars and Innovative Research Team in University, China (PCSIRT13073);the Jiangsu Collaborative Innovation Center for Modern Crop Production;an Openend Fund by State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, China (ZW2013009) 展开更多
关键词 Glycine max salt and drought stresses GmProT1 GmProT2
下载PDF
Genome-Wide Identification of Genes Responsive to ABA and Cold/Salt Stresses in Gossypium hirsutum by Data-Mining and Expression Pattern Analysis
2
作者 ZHU Long-fu HE Xin +6 位作者 YUAN Dao-jun XU Lian XU Li TU Li-li SHEN Guo-xin ZHANG Hong ZHANG Xian-long 《Agricultural Sciences in China》 CAS CSCD 2011年第4期499-508,共10页
For making better use of nucleic acid resources of Gossypium hirsutum, a data-mining method was used to identify putative genes responsive to various abiotic stresses in G. hirsutum. Based on the compiled database inc... For making better use of nucleic acid resources of Gossypium hirsutum, a data-mining method was used to identify putative genes responsive to various abiotic stresses in G. hirsutum. Based on the compiled database including genes involved in abiotic stress response in Arabidopsis thaliana and the comprehensive analysis tool of GENEVESTIGATOR v3, 826 genes up-regulated or down-regulated significantly in roots or leaves during salt or cold treatment in Arabidopsis were identified. As compared to these 826 Arabidopsis genes annotated, 38 homologous expressed sequence tags (ESTs) from G. hirsutum were selected randomly and their expression patterns were studied using a quantitative real-time reverse transcription-polymerase chain reaction method. Among these 38 ESTs, about 55% of the genes (21 of 38) were different in response to ABA between cotton and Arabidopsis, whereas 70% of genes had similar responses to cold and salt treatments, and some of them which had not been characterized in Arabidopsis are now being investigated in gene function studies. According to these results, this approach of analyzing ESTs appears effective in large-scale identification of cotton genes involved in abiotic stress and might be adopted to determine gene functions in various biologic processes in cotton. 展开更多
关键词 cold stress salt stress DATA-MINING gene Gossypium hirsutum
下载PDF
Synergistic effects of carbon cycle metabolism and photosynthesis in Chinese cabbage under salt stress 被引量:1
3
作者 Hao Liang Qiling Shi +8 位作者 Xing Li Peipei Gao Daling Feng Xiaomeng Zhang Yin Lu Jingsen Yan Shuxing Shen Jianjun Zhao Wei Ma 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期461-472,共12页
Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and horm... Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and hormone metabolism, nutritional balances, and results in ion toxicity in plants. To better understand the mechanisms of salt-induced growth inhibition in Chinese cabbage, RNA-seq and physiological index determination were conducted to explore the impacts of salt stress on carbon cycle metabolism and photosynthesis in Chinese cabbage. Here, we found that the number of thylakoids and grana lamellae and the content of starch granules and chlorophyll in the leaves of Chinese cabbage under salt stress showed a time-dependent response, first increasing and then decreasing. Chinese cabbage increased the transcript levels of genes related to the photosynthetic apparatus and carbon metabolism under salt stress, probably in an attempt to alleviate damage to the photosynthetic system and enhance CO_(2) fixation and energy metabolism. The transcription of genes related to starch and sucrose synthesis and degradation were also enhanced;this might have been an attempt to maintain intracellular osmotic pressure by increasing soluble sugar concentrations. Soluble sugars could also be used as potential reactive oxygen species(ROS) scavengers, in concert with peroxidase(POD)enzymes, to eliminate ROS that accumulate during metabolic processes. Our study characterizes the synergistic response network of carbon metabolism and photosynthesis under salt stress. 展开更多
关键词 Chinese cabbage salt stress Carbon metabolism PHOTOSYNTHESIS CHLOROPLAST
下载PDF
Adaptive strategy of Nitraria sibirica to transient salt,alkali and osmotic stresses via the alteration of Na+/K+fluxes around root tips
4
作者 Xindi Mei Ting Dai Yingbai Shen 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第2期425-432,共8页
Nitraria sibirica Pall.is an important shrub with a strong salt-alkali tolerance,but the mechanism underlying this tolerance remains obscure.In this study,N.sibirica,with salt-sensitive Vigna radiata(Linn.)Wilczek as ... Nitraria sibirica Pall.is an important shrub with a strong salt-alkali tolerance,but the mechanism underlying this tolerance remains obscure.In this study,N.sibirica,with salt-sensitive Vigna radiata(Linn.)Wilczek as the control,was subjected to transient salt stress(100 mM NaCl),alkali stress(50 mM Na_(2)CO_(3)),and osmotic stress(175 mM mannitol).The ionic fluxes of Na^(+)and K^(+)in the root apical region were measured.Results show that,under salt and alkali stress,N.sibirica roots exhibited higher capacities to limit Na+influx and reduce K+efflux,thereby resulting in lower Na^(+)/K^(+)ratios compared with V.radiata roots.Alkali stress induced stronger Na^(+)influx and K+efflux in the root salt stress treatment;Na^(+)influx was mainly observed in the root cap,while K^(+)efflux was mainly observed in the elongation zone.While under osmotic stress,N.sibirica roots showed stronger Na+efflux and weaker K+efflux than V.radiata roots.Na+efflux was mainly observed in the root elongation zone,while K+efflux was in the root cap.These results reveal the ionic strategy of N.sibirica in response to transient salt,alkali,and osmotic stresses through the regulation of Na+/K+flux homeostasis. 展开更多
关键词 Nirtaria sibirica Na^(+)/K^(+)fl uxes Na^(+)/K^(+)ratios salt stress Alkali stress Osmotic stress
下载PDF
AcWRKY28 mediated activation of AcCPK genes confers salt tolerance in pineapple(Ananas comosus)
5
作者 Qiao Zhou Samaranayaka Vidana Gamage Nirosha Priyadarshani +11 位作者 Rongjuan Qin Han Cheng Tiantian Luo Myat Hnin Wai Mohammad Aqa Mohammadi Yanhui Liu Chang Liu Hanyang Cai Xiaomei Wang Yeqiang Liu Yuan Qin Lulu Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期398-412,共15页
Unfavorable environmental cues severely affect crop productivity resulting in significant economic losses to farmers. In plants, multiple regulatory genes, such as the WRKY transcription factor (TF) family, modulate t... Unfavorable environmental cues severely affect crop productivity resulting in significant economic losses to farmers. In plants, multiple regulatory genes, such as the WRKY transcription factor (TF) family, modulate the expression of defense genes. However, the role of the pineapple WRKY genes is poorly understood. Here, we studied the pineapple WRKY gene, AcWRKY28, by generating AcWRKY28 over-expressing transgenic pineapple plants. Overexpression of AcWRKY28 enhanced the salt stress resistance in transgenic pineapple lines. Comparative transcriptome analysis of transgenic and wild-type pineapple plants showed that “plant-pathogen interaction” pathway genes, including 9calcium-dependent protein kinases (CPKs), were up-regulated in AcWRKY28 over-expressing plants. Furthermore, chromatin immunoprecipitation and yeast one-hybrid assays revealed AcCPK12, AcCPK3, AcCPK8, AcCPK1, and AcCPK15 as direct targets of AcWRKY28. Consistently, the study of AcCPK12 over-expressing Arabidopsis lines showed that AcCPK12 enhances salt, drought, and disease resistance. This study shows that AcWRKY28 plays a crucial role in promoting salt stress resistance by activating the expression of AcCPK genes. 展开更多
关键词 PINEAPPLE AcWRKY AcCPK Transcription factor salt stress CHIP
下载PDF
Wild soybean(Glycine soja)transcription factor GsWRKY40 plays positive roles in plant salt tolerance
6
作者 Minglong Li Man Xue +7 位作者 Huiying Ma Peng Feng Tong Chen Xiaohuan Sun Qiang Li Xiaodong Ding Shuzhen Zhang Jialei Xiao 《The Crop Journal》 SCIE CSCD 2024年第3期766-775,共10页
Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes p... Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes plant salt stress.GsWRKY40 was highly expressed in wild soybean roots and was up-regulated by salt treatment.GsWRKY40 was localized in nucleus and demonstrated DNA-binding activities but without transcriptional activation.Mutation and overexpression of GsWRKY40 altered salt tolerance of Arabidopsis plants.To understand the molecular mechanism of GsWRKY40 in regulating plant salt resistance,we screened a cDNA library and identified a GsWRKY40 interacting protein GsbHLH92 by using yeast two-hybrid approach.The physical interaction of GsWRKY40 and GsbHLH92 was confirmed by co-immunoprecipitation(co-IP),GST pull-down,and bimolecular fluorescence complementation(BiFC)techniques.Intriguingly,co-overexpression of GsWRKY40 and GsbHLH92 resulted in higher salt tolerance and lower ROS levels than overexpression of GsWRKY40 or GsbHLH92 in composite soybean plants,suggesting that GsWRKY40 and GsbHLH92 may synergistically regulate plant salt resistance through inhibiting ROS production.qRT-PCR data indicated that the expression level of GmSPOD1 gene encoding peroxidase was cooperatively regulated by GsWRKY40 and GsbHLH92,which was confirmed by using a dual luciferase report system and yeast one-hybrid experiment.Our study reveals a pathway that GsWRKY40 and GsbHLH92 collaboratively up-regulate plant salt resistance through impeding GmSPOD1 expression and reducing ROS levels,providing a novel perspective on the regulatory mechanisms underlying plant tolerance to abiotic stresses. 展开更多
关键词 Wild soybean Transcription factor salt stress ROS
下载PDF
Melatonin Alleviates Abscisic Acid Deficiency Inhibition on Photosynthesis and Antioxidant Systems in Rice under Salt Stress
7
作者 Feiyu Yan Xin Chen +7 位作者 Zhenzhen Wang Yuxuan Xia Dehui Zheng Sirui Xue Hongliang Zhao Zhiwei Huang Yuan Niu Guoliang Zhang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1421-1440,共20页
Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study inves... Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study investigated the endogenous levels of melatonin and abscisic acid in rice by using exogenous melatonin,abscisic acid,and their synthetic inhibitors,and examined their interactions under salt stress.The research results indicate that melatonin and abscisic acid can improve rice salt tolerance.Melatonin alleviated the salt sensitivity caused by abscisic acid deficiency,increased antioxidant enzyme activity and antioxidant content in rice treated with abscisic acid synth-esis inhibitors,and reduced total reactive oxygen species content and thiobarbituric acid reactive substance accu-mulation.Melatonin also increased the activity of key photosynthetic enzymes and the content of photosynthetic pigments,maintaining the parameters of photosynthetic gas exchange and chlorophyllfluorescence.In summary,melatonin alleviated the effects of abscisic acid deficiency on photosynthesis and antioxidant systems in rice and improved salt tolerance.This study is beneficial for expanding the understanding of melatonin regulation of crop salt tolerance. 展开更多
关键词 MELATONIN abscisic acid salt stress RICE PHOTOSYNTHESIS antioxidant system
下载PDF
Genome-Wide Exploration of the Grape GLR Gene Family and Differential Responses of VvGLR3.1 and VvGLR3.2 to Low Temperature and Salt Stress
8
作者 Honghui Sun Ruichao Liu +6 位作者 Yueting Qi Hongsheng Gao Xueting Wang Ning Jiang Xiaotong Guo Hongxia Zhang Chunyan Yu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期533-549,共17页
Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR... Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines. 展开更多
关键词 Genome-wide identification glutamate receptor(GLR)family low temperature stress salt stress GRAPE
下载PDF
Transcriptome profile of Dunaliella salina in Yuncheng Salt Lake reveals salt-stress-related genes under diff erent salinity stresses 被引量:1
9
作者 Fan GAO Fangru NAN +4 位作者 Jia FENG Junping LÜ Qi LIU Xudong LIU Shulian XIE 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第6期2336-2362,共27页
Salt stress is an abiotic stress to plants in especially saline lakes.Dunaliella,a halophilic microalga distributed throughout salt lakes and seas,can respond to different salinity stresses by regulating the expressio... Salt stress is an abiotic stress to plants in especially saline lakes.Dunaliella,a halophilic microalga distributed throughout salt lakes and seas,can respond to different salinity stresses by regulating the expression of some genes.However,these genes and their function and biological processes involved remain unclear.Profi ling these salt-stress-related genes in a high-salt-tolerant Dunaliella species will help clarify the salt tolerance machinery of Dunaliella.Three D.salina_YC salt-stress groups were tested under low(0.51 mol/L),moderate(1.03 mol/L),and high(3.42 mol/L)NaCl concentrations and one control group under very low(0.05 mol/L)NaCl concentration and 3 transcriptome results that were deep sequenced and de novo assembled were obtained per group.Twelve high-quality RNA-seq libraries with 46585 upregulated and 47805 downregulated unigenes were found.Relative to the control,188 common differentially expressed genes(DEGs)were screened and divided into four clusters in expression pattern.Fifteen of them annotated in the significant enriched Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)were validated via qPCR.Their qPCR-based relative expression patterns were similar to their RNA-seq-based patterns.Two significant DEGs,the geranylgeranyl diphosphate synthase coding gene(1876-bp cDNA)and diacylglycerol O-acyltransferase coding gene(2968-bp cDNA),were cloned and analyzed in silico.The total lipid content,superoxide dismutase specific activity,and betacarotene content of D.salina_YC increased gradually with increasing salinity.In addition,the expression of 11 validated genes involved in fatty acid biosynthesis/degradation,active oxygen or carotenoid metabolisms showed significant changes.In addition,algal photochemical efficiency was diminished with increasing salinity,as well as the expression of 4 photosynthesis-related genes.These results could help clarify the molecular mechanisms underlying D.salina responses to the Yuncheng Salt Lake environment and lay a foundation for further utilization of this algal resource. 展开更多
关键词 Dunaliella salina transcriptome analysis de novo assembly salt stress
下载PDF
Photosynthetic Characteristics of Clerodendrum trichotomum Thumb. Responses to Drought, Salt and Water-logging Stresses 被引量:1
10
作者 Xie Fu-chun Wang Hua-tian Qin Dong 《Journal of Northeast Agricultural University(English Edition)》 CAS 2017年第3期1-9,共9页
In order to reveal the photosynthetic characteristics of C. trichotomum responses to drought, salt and water-logging stresses, one-year-old potted seedlings were taken as materials, and the several stresses including ... In order to reveal the photosynthetic characteristics of C. trichotomum responses to drought, salt and water-logging stresses, one-year-old potted seedlings were taken as materials, and the several stresses including natural drought, submergence stress, water-logging and different salt treatments (0.2%, 0.4%, 0.6% and 0.8% NaCl) were carried out on August 15, 2012. The morphological and photosynthetic characteristics were observed and determined. The results showed that adverse enviromental stress had a significant effect on the morphological changes and photosynthetic characteristics of C. trichotomum. On the 14th day after natural drought, the leaves wilted and could not recovery at night, and 60% of the seedlings could recover after re-watering. From the 7th day to the 10th day after submergence stress treatment, the 2nd and the 3rd leaves at the base of 60% seedling turned yellow and the lenticels were observed. At the early stage of water-logging stress, white lenticels appeared at the base of seedlings, and the leaves wilted, chlorina and fallen off on the 8th day. A large number of leaves fallen off under 0.6% NaCl or more salt stress, and even the whole plant died. The chlorophyll content, net photosynthetic rate (Pn) and transpiration rate (Tr) decreased gradually with the stress process, such as 8 days after natural drought, less than 0.4% salt stress and water-logging stress, but the changes were not significant compared with those of the control. With the increase of the stress intensity and the prolonged time, the changes of photosynthetic index were significant. All the results indicated that C. trichotomum had a certain degree of tolerance to drought, water and salt, but it was not suitable for living, in water-logging condition for a long time. 展开更多
关键词 Clerodendrum trichotomum Thumb. natural drought submergence stress water-logging salt stress photosyntheticcharacteristic
下载PDF
Effects of Different Arbuscular Mycorrhizal Fungi on Physiology of Viola prionantha under Salt Stress 被引量:2
11
作者 Yajie Liu Linlin Fang +1 位作者 Wenna Zhao Chunxue Yang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期55-69,共15页
Arbuscular mycorrhizal(AM)fungi distribute widely in natural habits and play a variety of ecological functions.In order to test the physiological response to salt stress mediated by different AM fungi,Viola prionantha... Arbuscular mycorrhizal(AM)fungi distribute widely in natural habits and play a variety of ecological functions.In order to test the physiological response to salt stress mediated by different AM fungi,Viola prionantha was selected as the host,the dominant AM fungus in the rhizosphere of V.philippica growing in Songnen saline-alkali grassland,Rhizophagus irregularis,and their mixtures were used as inoculants,and NaCl stress was applied after the roots were colonized.The results showed that V.philippica could be colonized by AM fungi in the field and the colonization rate ranged from 73.33%to 96.67%,and Claroideoglomus etunicatum was identified as the dominant AM fungi species in the rhizosphere of V.philippica by morphology combined with sequencing for AM fungal AML1/AML2 target.Inoculation with both the species resulted in the formation of mycorrhizal symbiosis(the colonization rate was more than 70%)and AM fungi significantly enhanced plants’tolerance to salt stress of varying magnitude.Higher activity of antioxidant enzymes and augmented levels of proline and other osmoregulators were observed in AM plants.The content of MDA in CK was higher than that in the inoculations with the stress of 100,200,and 250 mM.All indices except soluble protein content and MDA content were significantly correlated with AM fungal colonization indices.The analysis for different AM fungal effects showed that the mixtures and R.irregularis worked even better than C.etunicatum.These results will provide theoretical support for the exploration and screening of salt-tolerant AM fungi species and also for the application of AM-ornamental plants in saline-alkali urban greening. 展开更多
关键词 Dominant AM fungi species Viola philippica salt stress Viola prionantha physiological response
下载PDF
Characters and structures of the nucleobase-ascorbate transporters(NAT)family genes in Gossypium hirsutum and their roles in responding to salt and drought stresses
12
作者 GUO Lixue ZHAO Lanjie +9 位作者 LU Xuke CHEN Xiugui WANG Shuai WANG Junjuan WANG Delong YIN Zujun CHEN Chao FAN Yapeng ZHANG Yuexin YE Wuwei 《Journal of Cotton Research》 2022年第2期115-129,共15页
Background: Nucleobase-ascorbate transporters(NAT), synonymously called nucleobase-cation symporter 2(NCS2) proteins, were earlier reported to be involved in plant growth, development and resistance to stress. Previou... Background: Nucleobase-ascorbate transporters(NAT), synonymously called nucleobase-cation symporter 2(NCS2) proteins, were earlier reported to be involved in plant growth, development and resistance to stress. Previous studies concluded that s a polymorphic SNP associated with NAT12 was significant di erent between salt-tolerant and salt-sensitive materials of upland cotton. In current study, a comprehensive analysis of NAT family genes was conducted for the first time in cotton.Results: In this study, we discovered 32, 32, 18, and 16 NAT genes in Gossypium hirsutum, G. barbadense, G. raimondii and G. arboreum, respectively, which were classified into four groups(groups I–IV) based on the multiple sequence analysis. These GhNAT genes were unevenly distributed on At and Dt sub-genome in G. hirsutum. Most GhNAT members in the same group had similar gene structure characteristics and motif composition. The collinearity analysis revealed segmental duplication as well as tandem duplication contributing to the expansion of the GhNATs. The analysis of cis-acting regulatory elements of GhNATs showed that the function of GhNAT genes in cotton might be related to plant hormone and stress response. Under di erent conditions, the expression levels further suggested the GhNAT family genes were associated with plant response to various abiotic stresses. GhNAT12 was detected in the plasma membrane. And it was validated that the GhNAT12 gene played an important role in regulating cotton resistance to salt and drought stress through the virus-induced gene silencing(VIGS) analysis.Conclusions: A comprehensive analysis of NAT gene family was performed in cotton, including phylogenetic analysis, chromosomal location, collinearity analysis, motifs, gene structure and so on. Our results will further broaden the insight into the evolution and potential functions of NAT genes in cotton. Current findings could make significant contribution towards screening more candidate genes related to biotic and abiotic resistance for the improvement in cotton. 展开更多
关键词 Gossypium hirsutum NAT gene family VIGS salt and drought stresses
下载PDF
Phosphorylation of SiRAV1 at Ser31 regulates the SiCAT expression to enhance salt tolerance in Setaria italica
13
作者 LI Qiao-lu LI Zhi-yong +2 位作者 WANG Meng-meng YAN Jing-wei FANG Lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第12期3638-3651,共14页
Salinity severely affects plant growth and development.Thus,it is crucial to identify the genes functioning in salt stress response and unravel the mechanism by which plants against salt stress.This study used the pho... Salinity severely affects plant growth and development.Thus,it is crucial to identify the genes functioning in salt stress response and unravel the mechanism by which plants against salt stress.This study used the phosphoproteomic assay and found that 123 of the 4000 quantitative analyzed phosphopeptides were induced by salt stress.The functional annotation of the non-redundant protein database(NR)showed 23 differentially expressed transcription factors,including a phosphopeptide covering the Serine 31 in the RAV(related to ABI3/VP1)transcription factor(named SiRAV1).SiRAV1 was located in the nucleus.Phenotypic and physiological analysis showed that overexpressing SiRAV1 in foxtail millet enhanced salt tolerance and alleviated the salt-induced increases of H_(2)O_(2) accumulation,malondialdehyde(MDA)content,and percent of electrolyte leakage.Further analysis showed that SiRAV1 positively regulated SiCAT expression to modulate the catalase(CAT)activity by directly binding to the SiCAT promoter in vivo and in vitro.Moreover,we found that phosphorylation of SiRAV1 at the Ser31 site positively regulated salt tolerance in foxtail millet via enhancing its binding ability to SiCAT promoter but did not affect its subcellular localization.Overall,our results define a mechanism for SiRAV1 function in salt response where salt-triggered phosphorylation of SiRAV1 at Ser31 enhances its binding ability to SiCAT promoter,and the increased SiCAT expression contributes to salt tolerance in foxtail millet. 展开更多
关键词 foxtail millet salt stress phosphoproteomic SiRAV1 SiCAT
下载PDF
Combining ectomycorrhizal fungi and plant growth-promoting rhizobacteria to enhance salt tolerance of Metasequoia glyptostroboides
14
作者 Weiliang Kong Xiuqian Xu +2 位作者 Zhenqian Li Yahui Wang Xiaoqin Wu 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第5期1603-1614,共12页
Plant growth and productivity are negatively affected by soil salinity.This study investigated the effects of the rhizosphere-promoting bacterium,Bacillus paramycoides JYZ-SD5,and the ectomycorrhizal fungus,Schizophyl... Plant growth and productivity are negatively affected by soil salinity.This study investigated the effects of the rhizosphere-promoting bacterium,Bacillus paramycoides JYZ-SD5,and the ectomycorrhizal fungus,Schizophyllum commune Be,on the growth of Metasequoia glyptostroboides under salt stress.Changes in biomass,root growth,root ion distribution and in vivo enzyme activities were determined under different treatments(Be,JYZ-SD5,and Be+JYZ-SD5).The results show that all inoculations increased chlorophyll content,shoot length and root diameter with or without salt stress,and the effect of Be+JYZ-SD5was the strongest.JYZ-SD5 and Be+JYZ-SD5 treatments significantly increased root length,surface area,bifurcation number,tip number,main root length and diameter under salt stress.Normal chloroplast structures developed under both single and double inoculations.Relative to the control,root activities of M.glyptostroboides in the Be,JYZSD5,and Be+JYZ-SD5 treatments increased by 31.3%,17.2%,and 33.7%.All treatments increased the activities of superoxide dismutase(SOD),peroxidase(POD),Na^(+)-K^(+)-ATPase and Ca^(2+)-Mg^(2+)-ATPase.The strongest effect was by Be+JYZ-SD5.Analysis of root ion distribution showed that,under salt stress,Na^(+)and K^(+)decreased and were concentrated in the epidermis or cortex.Na/K ratios also decreased.The Be+JYZ-SD5 treatment increased betaine by 130.3%and 97.9%under 50 mM and 100 mM salt stress,respectively.Together,these changes result in the activation of physiological and biochemical processes involved in the mitigation of salinity-induced stress in M.glyptostroboides. 展开更多
关键词 Bacillus paramycoides Schizophyllum commune Metasequoia glyptostroboides salt stress Plant growth
下载PDF
Identification of novel salt stress-responsive microRNAs through sequencing and bioinformatic analysis in a unique halophilic Dunaliella salina strain
15
作者 Fan GAO Fangru NAN +4 位作者 Jia FENG Junping LÜ Qi LIU Xudong LIU Shulian XIE 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第4期1558-1574,共17页
Dunaliella salina is a classic halophilic alga.However,its molecular mechanisms in response to high salinity at the post transcriptional level remain unknown.A unique halophilic alga strain,DS-CN1,was screened from fo... Dunaliella salina is a classic halophilic alga.However,its molecular mechanisms in response to high salinity at the post transcriptional level remain unknown.A unique halophilic alga strain,DS-CN1,was screened from four D.salina strains via cell biological,physiological,and biochemical methods.High-throughput sequencing of small RNAs(sRNAs)of DS-CN1 in culture medium containing 3.42-mol/L NaCl(SS group)or 0.05-mol/L NaCl(CO group)was performed on the BGISEQ-500 platform.The annotation and sequences of D.salina sRNAs were profiled.Altogether,44 novel salt stress-responsive microRNAs(miRNAs)with a relatively high C content,with the majority of them being 24 nt in length,were identified and characterized in DS-CN1.Twenty-one differentially expressed miRNAs(DEMs)in SS and CO were screened via bioinformatic analysis.A total of 319 putative salt stress-related genes targeted(104 overlapping genes)by novel miRNAs in this alga were screened based on our previous transcriptome sequencing research.Furthermore,these target genes were classified and enriched by GO and KEGG pathway analysis.Moreover,5 novel DEMs(dsa-mir3,dsa-mir16,dsa-mir17,and dsa-mir26 were significantly upregulated,and dsa-mir40 was significantly downregulated)and their corresponding 10 target genes involved in the 6 significantly enriched metabolic pathways were verified by quantitative real-time PCR.Next,their regulatory relationships were comprehensively analyzed.Lastly,a unique salt stress response metabolic network was constructed based on the novel DEM-target gene pairs.Taken together,our results suggest that 44 novel salt stress-responsive microRNAs were identified,and 4 of them might play important roles in D.salina upon salinity stress and contribute to clarify its distinctive halophilic feature.Our study will shed light on the regulatory mechanisms of salt stress responses. 展开更多
关键词 Dunaliella salina salt stress response small RNA(sRNAs)sequencing microRNA(miRNAs)
下载PDF
The lectin gene TRpL1 of tetraploid Robinia pseudoacacia L.response to salt stress
16
作者 Shuo Liu Yaxuan Jiang +7 位作者 Xinyu Guo Liping Xu Pei Lei Qiuxiang Luo Jianxin Liu Wei Li Lei Tao Fanjuan Meng 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第2期497-505,共9页
Lectins are natural proteins in animals,plants,and microorganisms and can be divided into 12 families.These lectins play important roles in various environmental stresses.Some polyploid plants show tolerance to enviro... Lectins are natural proteins in animals,plants,and microorganisms and can be divided into 12 families.These lectins play important roles in various environmental stresses.Some polyploid plants show tolerance to environmental stresses and to insect pests.However,the mechanism of stress tolerance is unclear.Tetraploid Robinia pseudoacacia(4×)under salt stress showed higher tolerance than diploid R.pseudoacacia(2×).As lectin can improve stress tolerance,it was questioned whether the stress resistance of polyploid plants was related to the lectin protein.In this study,salt resistance of lectin gene TRpL1 was verified by its over-expression in plants.In addition,salt resistance of lectin protein by E.coli strains was detected.The data revealed that the over-expression transgenic plants of TRpL1 showed better salt tolerance than control plants under salt stress,and the TRpL1-expressing strain also grew better in the medium with added NaCl.Therefore,tetraploid plants can resist salt stress through TRpL1 protein regulation. 展开更多
关键词 Tetraploid Robinia pseudoacacia lectin salt stress POLYPLOID
下载PDF
GhSCL4 Acts as a Positive Regulator in Both Transgenic Arabidopsis and Cotton during Salt Stress
17
作者 Yanyan Zhao Yanpeng Ding +1 位作者 Bailin Duan Qingzhou Xie 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期1-15,共15页
GRAS transcription factors play important roles in plant abiotic stress response,but their characteristics and functions in cotton have not been fully investigated.A cotton SCL4/7 subgroup gene in the GRAS family,GhSC... GRAS transcription factors play important roles in plant abiotic stress response,but their characteristics and functions in cotton have not been fully investigated.A cotton SCL4/7 subgroup gene in the GRAS family,GhSCL4,was found to be induced by NaCl treatments.Nuclear localization and transactivation activity of GhSCL4 indicate its potential role in transcriptional regulation.Transgenic Arabidopsis thaliana over-expressing GhSCL4 showed enhanced resistance to salt and osmotic stress.What’s more,the transcript levels of salt stress-induced genes(AtNHX1 and AtSOS1)and oxidation-related genes(AtAPX3 and AtCSD2)were more highly induced in the GhSCL4 over-expression lines than in wild type after salt treatment.Furthermore,silencing of GhSCL4 resulted in reduced salt tolerance in cotton caused by reactive oxygen species(ROS)enrichment under salt treatment,and antioxidant enzyme activities were accordingly significantly reduced in GhSLC4-silenced lines.These results indicated that GhSCL4 enhances salt tolerance of cotton by detoxifying ROS.In addition,the transient expression assay confirmed an interactive relationship between GhSCL4 and GhCaM7,which indicated that salt tolerance conferred by GhSCL4 might be associated with salt-induced Ca^(2+)/CaM7-mediated signaling.Taken together,GhSCL4 acts as a positive regulator in cotton during salt stress that is potentially useful for engineering salt-tolerant cotton. 展开更多
关键词 GRAS transcription factors GhSCL4 GhCaM7 salt stress ROS
下载PDF
Transcriptome Profiling of the Salt-Stress Response in Paper Mulberry
18
作者 Jie Zhang Yingwei Zhao +2 位作者 Hongying Li Jianwei Ni Dongmei Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第9期2591-2610,共20页
Paper mulberry is a high-quality woody feed resource plant with high crude protein content.It is widely distributed in China and has excellent characteristics of salt and alkali tolerance.Paper mulberry has ecological... Paper mulberry is a high-quality woody feed resource plant with high crude protein content.It is widely distributed in China and has excellent characteristics of salt and alkali tolerance.Paper mulberry has ecological and economic importance.Salt stress has become a critical factor with the increasing degree of soil salinity that restricts plant growth.In the saline-alkali environments,transcriptome expression is altered leading to phenotypic defects in most plants.However,the regulatory mechanism related to paper mulberry’s salt-stress(SS)response is not clearly understood.In the present study de novo transcriptomic assembly was performed,and gene expression levels were measured between different SS and natural conditions(25℃)as a control for paper mulberry plants.According to the results of our study,under NaCl stress conditions,the differential gene expression was observed in the leaves of paper mulberry compared with the control.A total of 2126 differentially expressed unigenes were observed.Among these unigenes the expression of 812 DEGs was up-regulated and the expression of 1,314 DEGs was down-regulated.Additionally,The GO and KEGG analyses regarding differentially expressed unigenes(DEUs)revealed that the observed critical transcriptomic alterations under salt stress(SS)conditions were associated with primary and secondary metabolism,photosynthesis,and plant hormone signaling pathways.Further investigations such as gene function studies regarding the unigenes depicting altered expression under salt stress conditions in paper mulberry will help understand the mechanism of salt tolerance,and this information can be utilized in paper mulberry breeding and improvement programs. 展开更多
关键词 Gene regulation paper mulberry salt stress TRANSCRIPTOME
下载PDF
Proteome-wide identification of S-sulfenylated cysteines response to salt stress in Brassica napus root
19
作者 Qian Qu Xiaowei Wu +4 位作者 Qing Zhou Shaoping Lu Xuan Yao Liang Guo Liangqian Yu 《Oil Crop Science》 CSCD 2023年第4期243-251,共9页
Reactive oxygen species(ROS)play a key role in a variety of biological processes,such as the perception of abiotic stress,the integration of different environmental signals,and the activation of stress response networ... Reactive oxygen species(ROS)play a key role in a variety of biological processes,such as the perception of abiotic stress,the integration of different environmental signals,and the activation of stress response networks.Salt stress could induce an increased ROS accumulation in plants,disrupting intracellular redox homeostasis,leading to posttranslational modifications(PTMs)of specific proteins,and eventually causing adaptive changes in metabolism.Here,we performed an iodoTMT-based proteomic approach to identify the sulfenylated proteins in B.napus root responsing to salt stress.Totally,1348 sulfenylated sites in 751 proteins were identified and these proteins were widely existed in different cell compartments and processes.Our study revealed that proteins with changed abundance and sulfenylation level in B.napus root under salt stress were mainly enriched in the biological processes of ion binding,glycolysis,ATP binding,and oxidative stress response.This study displays a landscape of sulfenylated proteins response to salt stress in B.napus root and provides some theoretical support for further understanding of the molecular mechanisms of redox regulation under salt stress in plants. 展开更多
关键词 IodoTMT Brassica napus root salt stress SULFENYLATION Redox regulation
下载PDF
Chlorophyll Fluorescence Response of Persimmon Plants under Salt Stress
20
作者 Xining GENG Lihua XIE +1 位作者 Jingwen XU Ruiyuan WANG 《Medicinal Plant》 CAS 2023年第5期42-44,共3页
[Objectives]To study the photosynthetic response mechanism of persimmon seedlings to salt stress.[Methods]The chlorophyll fluorescence parameters of Diospyros virginiana and Diospyros lotus seedlings under 4%salt stre... [Objectives]To study the photosynthetic response mechanism of persimmon seedlings to salt stress.[Methods]The chlorophyll fluorescence parameters of Diospyros virginiana and Diospyros lotus seedlings under 4%salt stress were studied by pot culture salt control method,including the minimal fluorescence(F_(0)),maximum fluorescence(F_(m)),potential activity of PS II(F_(v)/F_(0)),maximum photochemical efficiency of PS II(F_(v)/F_(m)),electron transport rate(ETR),actual photochemical efficiency of PS II(Y II),and photochemical quenching coefficient(q_(p)).[Results]Under 4%salt stress,the maximum fluorescence(F_(m)),maximum photochemical efficiency of PS II(F v/F m),and photochemical quenching coefficient(q_(p))of two persimmon plants decreased with time.The potential activity of PS II(F_(v)/F_(0)),actual photochemical efficiency of PS II(Y_(II)),and electron transport rate(ETR)decreased under salt stress.[Conclusions]This study indicates that the PS II reaction center in the persimmon leaves was damaged and the electron transport at the acceptor side was damaged under salt stress.It is expected to lay a foundation for the analysis of salt-tolerance mechanism of persimmon plants. 展开更多
关键词 Chlorophyll fluorescence salt stress Diospyros virginiana Diospyros lotus
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部