期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study on Relationship Between Differential Proteins of Bacillus cereus LBR-4 and Its Salt Tolerance Mechanism
1
作者 Tan Jia-li Du Chuan-ying +3 位作者 Wang Jian Ni He-jia Gao Ji-guo Li Hai-tao 《Journal of Northeast Agricultural University(English Edition)》 CAS 2020年第3期53-62,共10页
In order to explore the salt tolerance mechanism of Bacillus cereus LBR-4 with salinity of 14%NaCl,differential proteomic analysis of the whole protein of LBR-4 strain expressed under 14%NaCl high salinity condition a... In order to explore the salt tolerance mechanism of Bacillus cereus LBR-4 with salinity of 14%NaCl,differential proteomic analysis of the whole protein of LBR-4 strain expressed under 14%NaCl high salinity condition and normalculture condition(1%NaCl)was studied by two-dimensional electrophoresis and mass spectrometry.The isoelectric point of most detected proteins was between pH 4-7 and the molecular weight distribution was 10-70 ku.Compared with the normal culture condition,the expression level of 118 protein spots in the whole protein expression map changed significantly(accounting for 25.2%of the total protein spots).The expression level of 78 protein spots increased significantly,including 22 new protein spots that appeared under high salt stress.The expression levels of 40 protein spots decreased significantly,including 18 protein spots that disappeared under high salt stress.By mass spectrometry,six distinct differentially expressed protein spotswere dihydroxy acid dehydratase,cell division protein FtsZ,iron sulfur cluster synthesis protein SufD,unknown carboxylase YngE,hypothetical acetaldehyde dehydrogenase DhaS and phenylalanine acid tRNA ligase alpha subunit.It was speculated that under high salt stress,the cells had protective measures and the secretion of intracellular compatible solutes increased.The iron and sulfur clusters involved in various physiological reactions also activated the stressful suf synthesis pathway,and therate of cell division and reproduction was also slowed down and ensured the normal progress of physiological reactions inthe cells. 展开更多
关键词 Bacillus cereus LBR-4 PROTEOMICS two-dimensional electrophoresis protein profile salt tolerance mechanism
下载PDF
Mechanism of Salt Tolerance in Rice 被引量:35
2
作者 N.HUSSAIN A.ALI +2 位作者 G.SARWAR F.MUJEEB M.TAHIR 《Pedosphere》 SCIE CAS CSCD 2003年第3期233-238,共6页
Shaheen Basma ti was evolved as a salt tolerant fine rice va riety by the Soil Salinity Research Institute,Pindi Bhattian, Pakistan. Water culture studies were conducted to investigate the physiological mechanismexerc... Shaheen Basma ti was evolved as a salt tolerant fine rice va riety by the Soil Salinity Research Institute,Pindi Bhattian, Pakistan. Water culture studies were conducted to investigate the physiological mechanismexercised by this variety in particular and rice plant in general to face the saline environment. Performanceof this rice variety and the concentration and uptake of ions were studied under stress of three salinity levels(30, 60 and 90 mmol L-1) created with NaCl. Recorded data indicated that shoot dry matter was notsignificantly affected by all the three levels of salinity. However, NaCl levels of 60 and 90 mmol L-1 affectedthe root dry matter significantly. Sodium concentration and uptake was enhanced significantly in root andshoot at the first level of salinity (30 mmol L-1) but thereafter the differences were non-significant, indicatingthe preferential absorption of this cation. The K concentration decreased significantly in shoots at all thelevels. The impact was less pronounced in roots as far as K absorption was concerned. The effect on Ca andMg concentrations was not significant. The values of K:Na, Ca:Na and (Ca+Mg):Na ratios in shoot and rootwere comparatively low under stress conditions, indicating that selective ion absorption may be the principalsalt tolerance mechanism of variety Shaheen Basmati when grown in a saline medium. 展开更多
关键词 dry matter rice variety SALINITY salt tolerance mechanism selective ionabsorption
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部