[Objective] The aim was to study the effect of salt solution on characteristics of soil infiltration, and to provide references for the further studies on the effect of water quality on soil infiltration characteristi...[Objective] The aim was to study the effect of salt solution on characteristics of soil infiltration, and to provide references for the further studies on the effect of water quality on soil infiltration characteristics and its mechanism. [Method] With the NaCl, CaCl2 solutions as the main test materials, the effect of different water quality and salt solution concentration on soil infiltration was studied under one-dimensional vertical ponded water infiltration at laboratory. [Result] The solution concentration could affect the infiltration performance. The trends of the infiltration rates, cumulative infiltrations and wetting front migration distances were all 50 mg/L 100 mg/L 10 mg/L. At the same concentration, the effect of NaCl solution on soil infiltration characteristics was more significant than CaCl2 solution: in the same time, cumulative infiltration and wetting front migration distance of NaCl solution were greater than CaCl2 solution; compared with NaCl solution, CaCl2 solution took longer time to infiltrate the same amount of water. The dynamic changes of infiltration rate, wetting front and cumulative infiltration were well fitted to the Philip model. [Conclusion] This study only conducted indoor experiment to the infiltration of salt solutions, involving in low concentration and small range. Although it provided some references for the study on the effect of water quality on soil infiltration characteristics and its mechanism, studies in larger areas and with bigger concentrations are demanding.展开更多
A novel utilization way of the sludge from wet calcium-based flue gas desulfurization (FGD) processes has been developed in this paper. This study focused on the conversion of the FGD gypsum into α-hemihydrate calc...A novel utilization way of the sludge from wet calcium-based flue gas desulfurization (FGD) processes has been developed in this paper. This study focused on the conversion of the FGD gypsum into α-hemihydrate calcium sulfate by a hydrothermal salt solution method at atmospheric pressure. Experimental study has been carried out in a batch reactor. Qualitative and quantitative analyses were made by DSC/TG thermal analysis, SEM, XRD, metalloscope and chemical analysis. The experimental results showed that the modification of FGD gypsum was controlled by the dissolution and recrystallization mechanisms. With the introduction of FGD gypsum the salt solution was supersaturated, then crystal nucleus of α-hemihydrate calcium sulfate were produced in the solution. With the submicroscopic structure of FGD gypsum crystal changed, the crystal nucleus grew up into α-hemihydrate calcium sulfate crystals. Thus ,the modification of FGD gypsum was fulfilled.展开更多
The acid gas absorption in four potassium based amino acid salt solutions was predicted using artificial neural network(ANN). Two hundred fifty-five experimental data points for CO_2 absorption in the four potassium b...The acid gas absorption in four potassium based amino acid salt solutions was predicted using artificial neural network(ANN). Two hundred fifty-five experimental data points for CO_2 absorption in the four potassium based amino acid salt solutions containing potassium lysinate, potassium prolinate, potassium glycinate, and potassium taurate were used in this modeling. Amine salt solution's type, temperature, equilibrium partial pressure of acid gas, the molar concentration of the solution, molecular weight, and the boiling point were considered as inputs to ANN to prognosticate the capacity of amino acid salt solution to absorb acid gas. Regression analysis was employed to assess the performance of the network. Levenberg–Marquardt back-propagation algorithm was used to train the optimal ANN with 5:12:1 architecture. The model findings indicated that the proposed ANN has the capability to predict precisely the absorption of acid gases in various amino acid salt solutions with Mean Square Error(MSE) value of 0.0011, the Average Absolute Relative Deviation(AARD) percent of 5.54%,and the correlation coefficient(R^2) of 0.9828.展开更多
Several action regimes were employed, namely, those exposed to solutions containing single and/or composite chloride and sulfate salts, and under wet-dry cycles and/or flexural loading. The variations in dynamic modul...Several action regimes were employed, namely, those exposed to solutions containing single and/or composite chloride and sulfate salts, and under wet-dry cycles and/or flexural loading. The variations in dynamic modulus of elasticity(Erd values) were monitored, as well as the key factor impacting on the chloride ingress when concrete subjected to multiple action regimes was identified by the method of Grey Relation Analysis(GRA). The changes in micro-structures and mineral products of interior concrete after different action regimes were investigated by means of X-ray diffraction(XRD), mercury intrusion technique(MIP), and scanning electron microscopy(SEM). The test results showed that the cyclic wet-dry accelerated the deterioration of OPC concrete more than the action of 35% flexural loading based on the results of Erd values and the GEA. The analyses from micro-structures could give certain explanations to the change in Erd values under different action regimes.展开更多
The NaF-CaF_2 system has been studied by molecular dynamics simulation.The pair correlation functions between cations and anions and the bond angle distributions of cation and anion triplets have been obtained.The bri...The NaF-CaF_2 system has been studied by molecular dynamics simulation.The pair correlation functions between cations and anions and the bond angle distributions of cation and anion triplets have been obtained.The bridging and complexing in the system are discussed based on the pair correlation functions and bond angle distributions.The results simulated show that the F^- ions around a Ca^(2+)ion do not form tetrahedron coordination,so some of small complexing clusters such as CaF_4^(2-)are hardly found.A possible structure of F^- ions around Ca^(2+)ions is that three Ca^(2+)ions constitute an equilateral triangle through three Ca-F-Ca bridges and two F^- ions are located over and under the center of the right triangle,respectively.Meanwhile,on the outside of the triangle,every Ca^(2+)ion has other two F^- ions as its neighbors.展开更多
This paper study stability of saturated salt solutions cells at 25 ℃. These cells were prepared and measured at National Institute for Standard (NIS-Egypt) to study the stability of the saturated salt solutions. Th...This paper study stability of saturated salt solutions cells at 25 ℃. These cells were prepared and measured at National Institute for Standard (NIS-Egypt) to study the stability of the saturated salt solutions. The study was carried out using three saturated salt solutions, which are Potassium Acetate 22.5%, Potassium Iodide 68.9% and Potassium Sulphate 97.3% to cover low, medium and high relative humidity. The study was carried out using different shapes and volumes half liter spherical, liter spherical and liter conical per each salt which was prepared. The apparatus which used in measurement system in the first time are the same which used after ten years. The results show that the change of relative humidity value after ten years ranged from 0.1% to 0.7%. This value is suitable within uncertainty + 2%. The period of stability for each run for all cells was found to be more than five hours and this period enough for calibration. The measurements show that the cells are stable for more than ten years with accepted value.展开更多
A series of nonionic polyacrylamide hydrogels, using acrylamide as monomer and N,N'-methylene diacrylamide as crosslinking agent, were prepared by the free radical polymerization in aqueous solution. Swelling equilib...A series of nonionic polyacrylamide hydrogels, using acrylamide as monomer and N,N'-methylene diacrylamide as crosslinking agent, were prepared by the free radical polymerization in aqueous solution. Swelling equilibria for the gels were carried out in aqueous solutions of NaCl, KCI, CaCl2, Na2HPO4 and K2HPO4 with concentration ranging from 10^-3 to 5mol/kgH2O at 25 ℃. Experimental results revealed that the chlorides and phosphates cause a different behavior at higher salt concentration. The swelling ratio increases with increasing concentration of chlorides salts, while decreases with the increased phosphates salt concentration. The phenomena seem to be related to the different interactions of chloride and hydrogen phosphate ions with the network groups. Furthermore, the effects of different concentration of crosslinking agent and total monomers on gel swelling performance were also investigated.展开更多
Solutions of metals in molten salts present a rich phenomenology: localisatlon of electrons in disordered ionic media, activated electron transport increasing with metal concentration towards a nonmetal-metal (NM-M) t...Solutions of metals in molten salts present a rich phenomenology: localisatlon of electrons in disordered ionic media, activated electron transport increasing with metal concentration towards a nonmetal-metal (NM-M) transition, and liquid-liquid phase separation. A brief review of progress in the study of these systems is given in this article, with main focus on the NM-M transition. After recalling the known NM-M behaviour of the component elements in the case of expanded fluid alkali metals and mercury and of solid halogens under pressure, the article focuses on liquid metal-molten salt solutions and traces the different NM-M behaviours of the alkalis in their halides and of metals added to polyvalent metal halides.展开更多
An Mg-Zn-Mn-Ca alloy with high Zn content was fabricated by vacuum melting. The as-cast microstructure was investigated using XRD, SEM and EDS. It was shown that the alloy was composed of α-Mg, strip-like Ca2Mg6Zn3 a...An Mg-Zn-Mn-Ca alloy with high Zn content was fabricated by vacuum melting. The as-cast microstructure was investigated using XRD, SEM and EDS. It was shown that the alloy was composed of α-Mg, strip-like Ca2Mg6Zn3 and a few Mn- containing phases. Most of the Ca2Mg6Zn3 phase was distributed at grain boundaries while Mn-containing particles were deposited within grains. The as-cast samples were immersed in a Hank's balanced salt solution (HBSS) up to 24 h. The corroded surface morphology and cross-section microstructure were analyzed after different time of immersion so as to understand the corrosion behavior of the alloy. During immersion in the HBSS, the alloy corroded homogeneously at the very beginning and then localized corrosion occurred. The secondary phases protruded on the surface due to the dissolution of α-Mg, suggesting micro- galvanic corrosion occurred with secondary phases acting as the cathode and ct-Mg as the anode. Micro-cracks were formed at the interfaces between Ca2Mg6Zn3 and α-Mg, indicating an undermining tendency of the secondary phases.展开更多
Rock salt has excellent properties for its use as underground leak‐proof containers for the storage of renewable energy.Salt solution mining has long been used for salt mining,and can now be employed in the construct...Rock salt has excellent properties for its use as underground leak‐proof containers for the storage of renewable energy.Salt solution mining has long been used for salt mining,and can now be employed in the construction of underground salt caverns for the storage of hydrogen gas.This paper presents a wide range of methods to study the mineralogy,geochemistry,microstructure and geomechanical characteristics of rock salt,which are important in the engineering of safe underground storage rock salt caverns.The mineralogical composition of rock salt varies and is linked to its depositional environment and diagenetic alterations.The microstructure in rock salt is related to cataclastic deformation,diffusive mass transfer and intracrystalline plastic deformation,which can then be associated with the macrostructural geomechanical behavior.Compared to other types of rock,rock salt exhibits creep at lower temperatures.This behavior can be divided into three phases based on the changes in strain with time.However,at very low effective confining pressure and high deviatoric stress,rock salt can exhibit dilatant behavior,where brittle deformation could compromise the safety of underground gas storage in rock salt caverns.The proposed review presents the impact of purity,geochemistry and water content of rock salt on its geomechanical behavior,and thus,on the safety of the caverns.展开更多
Electrochemical milling is a modified technique of traditional electrochemical machining(ECM)that can be used to manufacture some helicopter transmission system parts.The use of rotary tools and an inner-jet electroly...Electrochemical milling is a modified technique of traditional electrochemical machining(ECM)that can be used to manufacture some helicopter transmission system parts.The use of rotary tools and an inner-jet electrolyte supply pattern can greatly improve the material removal rate(MRR)in a single pass.However,the feed speed is generally limited to minimize the tool wear.To increase the MRR,electrical discharge machining(EDM)is introduced into the electrochemical milling process.The tool rotation is employed to interrupt the discharge and the high-conductivity salt solution and non-pulsed direct current power supply are also adopted to increase ECM,eventually,a new machining method is proposed,which can be called rotary sinking electrochemical discharge milling(RSECD milling).The mechanism of it is explored in this study by analyzing the machined current,MRR,surface morphology,and tool wear at different applied voltages and feed speeds.Besides,the RSECD milling using the tool with a larger diameter is also conducted to further verify the effectiveness.In particular,the MRR can be increased by 742.5%when using the tool with a diameter of 20 mm at the applied voltage of 20 V.展开更多
To investigate the corrosion degradation law and service life of reinforced concrete in various salt solution environments,reinforced concrete specimens were semi-immersed in 3%Na_(2)CO_(3)(N3-0-0),3%Na_(2)CO_(3)+3%Na...To investigate the corrosion degradation law and service life of reinforced concrete in various salt solution environments,reinforced concrete specimens were semi-immersed in 3%Na_(2)CO_(3)(N3-0-0),3%Na_(2)CO_(3)+3%NaCl(N3-Cl3-0)and 3%Na_(2)CO_(3)+3%NaCl+3%Na_(2)SO_(4)(N3-Cl3-S3)salt solutions.The electrochemical workstation was used for regular non-destructive testing,and the polarization curve and related electrochemical parameters were used as the macroscopic durability evaluation indicators,while microscopic analysis of steel bar corrosion products was performed in combination with SEM and EDS.In addition,the corrosion current density degradation model of GM(1,1)was established and compared with the modified GM(1,1)-Markov degradation model.The results showed that the prediction error of the GM(1,1)-Markov model was smaller and more accurate than that of GM(1,1).The reinforced concrete specimens in the N3-0-0,N3-Cl3-0 and N3-Cl3-S3 solutions reached the failure state in 3.08,1.67,and 2.30 years,respectively,as predicted by the GM(1,1)-Markov model.According to ESM and EDS microscopic analysis of reinforcement,carbonate had no significant effect on reinforcement corrosion,chloride ions played a dominant role in reinforcement corrosion,and sulfate ion improved concrete's resistance to chloride ion corrosion.Based on GM(1,1)-Markov model,the failure and damage of reinforced concrete in saline soil areas can be quantitatively evaluated in the whole life cycle,which provides a theoretical basis for the early maintenance or reinforcing of reinforced concrete.展开更多
Electrochemical machining(ECM) is becoming increasingly important for the efficient machining of parts with a large machining area. This is an addition challenge for ECM because of the very high machining current. To ...Electrochemical machining(ECM) is becoming increasingly important for the efficient machining of parts with a large machining area. This is an addition challenge for ECM because of the very high machining current. To overcome this difficulty, a direct and effective strategy is to adopt the machining mode that uses a low-concentration electrolyte with a low current density.The purpose of this study is to reveal the electrochemical behaviour and surface morphology in low-concentration electrolyte.The polarization behavior of Ti-48Al-2Cr-2Nb is measured by linear sweep voltammetry and cyclic voltammetry curves. The ηω-j curves demonstrate the special dissolution behaviour of Ti-48Al-2Cr-2Nb at low current densities. The surface morphology,surface quality, and dissolution mechanism are analysed in three low-concentration electrolytes at different current densities after the ECM dissolution experiments. The results demonstrate that Ti-48Al-2Cr-2Nb exhibits three unique dissolution morphologies in the three solutions, and we found that the γ-TiAl phase dissolves faster than the α2-Ti3Al phase. These results also show that 1% NaCl solution is more suitable for Ti-48Al-2Cr-2Nb in ECM compared with the other two solutions, considering its good surface quality, low breakdown potential, and high material removal rate. Later, the dissolution process of the sample in 1% NaCl solution at different corrosion times is revealed. Moreover, a dissolution model is proposed for the electrochemical dissolution behaviour of Ti-48Al-2Cr-2Nb in 1% NaCl solution.展开更多
Stimuli-responsive hydrogel is regarded as one of the most promising smart soft materials for the next-generation advanced technologies and intelligence robots,but the limited variety of stimulus has become a non-negl...Stimuli-responsive hydrogel is regarded as one of the most promising smart soft materials for the next-generation advanced technologies and intelligence robots,but the limited variety of stimulus has become a non-negligible issue restricting its further development.Herein,we develop a new stimulus of“touch”(i.e.,spatial contact with foreign object)for smart materials and propose a flytrap-inspired touch-responsive polymeric hydrogel based on supersaturated salt solution,exhibiting multiple responsive behaviors in crystallization,heat releasing,and electric signal under touch stimulation.Furthermore,utilizing flytrap-like cascade response strategy,a soft actuator with touch-responsive actuation is fabricated by employing the touch-responsive hydrogel and the thermo-responsive hydrogel.This investigation provides a facile and versatile strategy to design touch-responsive smart materials,enabling a profound potential application in intelligence areas.展开更多
The elastic behavior of saturated porous materi- als under undrained freezing is investigated by using a poro- mechanical approach. Thermodynamic equilibria are used to describe the crystallization process of the part...The elastic behavior of saturated porous materi- als under undrained freezing is investigated by using a poro- mechanical approach. Thermodynamic equilibria are used to describe the crystallization process of the partially frozen solution in bulk state and confined state in pores. By phase transition at freezing, fusion energy, thermal contraction of solid, solution and ice crystals, volume changes of crystallization build up remarkable pore pressure that induces expansion or shrinkage of solid matrix. Owing to the lower chemical potential when pore water mixes with salts, fewer ice forms in pores. Penetration of ice into the porous materials increases the capillary pressure, but limits effect on the pore liquid pressure and the strain of solid matrix. On the contrary, the pore pressure induced by solution density rises as salt concentration increases and causes significant shrinkage of solid matrix.展开更多
The macroporous anion exchangers with long-chained cross-linking agents were investigated for the tungsten recovery from salt solutions.The physical-chemical characteristics of these sorbents were studied by means of ...The macroporous anion exchangers with long-chained cross-linking agents were investigated for the tungsten recovery from salt solutions.The physical-chemical characteristics of these sorbents were studied by means of sorption-desorption experiment aswell as electron and IR-spectroscopy.The anion exchangers on the basis of macroporous copolymers of methylacrylate and divinyl-ester of diethyleneglycol or tetravinyl-ester of pentaerythritol possess the exchange capacity to tungsten 2--5 times greater than the porous anion exchangers on the basis of styrene and divinylbenzene,therefore they can be used for selective tungsten recovery from comulex salt solutions.展开更多
Bentonite-sand mixtures are widely used in engineering barrier of deep geological disposal of high-level radioactive nuclear waste and anti-seepage barrier of civil geotechnical engineering.Under the action of groundw...Bentonite-sand mixtures are widely used in engineering barrier of deep geological disposal of high-level radioactive nuclear waste and anti-seepage barrier of civil geotechnical engineering.Under the action of groundwater solution infiltration and external stress,the hydro-mechanical(HM)behaviour of bentonitesand mixtures,i.e.the swelling characteristics and permeability,will change.Once the anti-seepage and filtration effect is weakened or lost,the pollutants will spread to the biosphere.Therefore,it is necessary to study the swelling characteristics and permeability of bentonite-sand mixtures under coupled mechanochemical(MC)effect and to establish corresponding prediction model.For this reason,swelling tests under salt solution with different concentrations are conducted on pure bentonite and its mixtures with 30%,70%and 90%sand contents,the compression tests are carried out on saturated samples,and the saturated permeability coefficient k of the sample under each load is calculated by Terzaghi’s one-dimensional consolidation theory.The concepts of true effective stress pe,montmorillonite void ratio em and critical sand content as are introduced to determine the em-pe relationship and finally the k-em relationship of bentonite-sand mixtures.It is found that when the sand content aas,the em-pe relationship of the mixture is linear and independent of the salt solution concentration,and when a>as,the em-pe relationship of bentonite-sand mixture is bi-linear with the true effective deviatoric stress pesa as the intersection.In addition,the em-k relationship also shows the linear trend when aas,and the slope of the line increases with the increase of the salt solution concentration.When a>as,the k-em relationship will deviate from the linear relationship.Moreover,the larger the sand content is,the farther the deviation is.On the basis of summing the regularity,a model for predicting the HM behaviour of bentonite-sand mixture under the coupled MC effect is proposed.By comparing the swelling and permeability test results with model prediction results of different types of bentonite and its sand mixtures,the predictive model is verified.The study on the HM behaviour of bentonite-sand mixtures under salt solution infiltration and the model establishment can provide experimental and theoretical basis for the design and construction of anti-seepage engineering by bentonite-sand mixtures.展开更多
A comparison of Arternia cysts hatching (Artemia franciscana) were conducted on bleaching and non-bleaching with sodium hypochloride on five dilution of salt solution by using sea water, sea salt solution, artificia...A comparison of Arternia cysts hatching (Artemia franciscana) were conducted on bleaching and non-bleaching with sodium hypochloride on five dilution of salt solution by using sea water, sea salt solution, artificial sea salt solutions, iodine added cooking salt solution, and rock salt solutions. All solutions were adjusted at 30 ppt of salinity in 1 litter cylinder. The experiment was carried out with Factorial Experiment in CRD. After 24 hours, a randomized count of living Artemia was taken a photograph of Artemia size by stereo microscope. A statistic analysis showed that all data of bleaching and non-bleaching were no significant difference (P 〉 0.05). The hatching ability of Artemia cysts in solutions was examined and the results showed that sea salt solution was 327.33 × 103.4. 28,536.5263 Nauplii/liter, sea water 316 ×10^3± 20,420.5779 Nauplii/liter, artificial sea salt solutions 314.33× 10^3 ± 34,268.5473 Nauplii/liter, iodine added cooking salt solution 309.66 ± 10^3 .4- 22,898.3260 Nauplii/liter, and rock salt solutions 305.33 ± 10^3 ± 25,579.9401 Nauplii/liter, respectively. The body length of Artemia was compared and the data showed that there was no significant difference (P 〉 0.05). The highest body length was found in sea salt solution 527.32 ± 4.70μm, sea water 521.65±8.51 μm, artificial sea salt solutions 522.08 ± 10.04 μm, iodine added cooking salt solution 522.67 ±7.87 μm, and rock salt solutions 516.33 ±11.15μm, respectively.展开更多
Determining osmotic suction from the electrical conductivity(EC)of soil pore water was widely reported in the literature.However,while dealing with unsaturated soils,they do not have enough soil pore water to be extra...Determining osmotic suction from the electrical conductivity(EC)of soil pore water was widely reported in the literature.However,while dealing with unsaturated soils,they do not have enough soil pore water to be extracted for a reliable measurement of EC.In this paper,the chilled-mirror dew-point hygrometer and contact filter paper method were used to determine the total and matric suctions for low-plasticity soils with different salinities(0.05‰,2.1‰,and 6.76‰).A new piecewise function was proposed to calculate the osmotic suction,with the piecewise point corresponding to the first occurrence of precipitated salt in mixed salt solutions(synthetic seawater).EC,ion and salt concentrations used for osmotic suction calculation were transformed from the established relationships of mixed salt solution instead of experimental measurement.The calculated osmotic suction by the proposed equation and the equations in the literature was compared with the indirectly measured one(the difference between the measured total and matric suctions).Results showed that the calculated osmotic suction,especially the one calculated using the proposed function,was in fair agreement with the indirectly measured data(especially for specimens with higher salinity of 6.76‰),suggesting that the transformation of EC and concentrations from the established relationship is a good alternative to direct measurement for lowplasticity soil.In particular,the proposed method could be applied to unsaturated low-plasticity soils which do not have enough soil pore water for a proper EC measurement.展开更多
The formation ofjarosite in the presence of Acidithiobacillusferrooxidans (A. ferrooxidans) was researched to ascertain the conditions of producing minimum precipitation. The effects of salt concentration and pH on ...The formation ofjarosite in the presence of Acidithiobacillusferrooxidans (A. ferrooxidans) was researched to ascertain the conditions of producing minimum precipitation. The effects of salt concentration and pH on the characteristics ofjarosite formed in K2SO4/(NHa)2SOa-FeSO4 inorganic salt solution and 9K medium were studied by using the measurements of scanning electron microscope, X-ray diffraction, Fourierism transform infrared analysis, thermogravity/differential thermogravity analysis and particle size analysis to evaluate the product. The results indicate that the formation of jarosite begins when A. ferrooxidans reaches logarithmic growth phase in 9K medium, and a higher pH value is beneficial to the formation of jarosite. The jarosite formed in 9K medium has smaller and more concentrative particle size and smoother surface than that formed in inorganic salt solution.展开更多
基金Supported by the National Natural Science Foundation of China(40801100,50179035,50609022)the State Key Laboratory Fund Project of Soil Erosion and Dryland Faming on Loess Plateau(10501-177,10501-220)+1 种基金the Discipline Construction Fund of Ludong Universitythe Open Fund for Key Laboratory of Soil,Water and Environmental Conservation in Shandong Province(STKF201011)~~
文摘[Objective] The aim was to study the effect of salt solution on characteristics of soil infiltration, and to provide references for the further studies on the effect of water quality on soil infiltration characteristics and its mechanism. [Method] With the NaCl, CaCl2 solutions as the main test materials, the effect of different water quality and salt solution concentration on soil infiltration was studied under one-dimensional vertical ponded water infiltration at laboratory. [Result] The solution concentration could affect the infiltration performance. The trends of the infiltration rates, cumulative infiltrations and wetting front migration distances were all 50 mg/L 100 mg/L 10 mg/L. At the same concentration, the effect of NaCl solution on soil infiltration characteristics was more significant than CaCl2 solution: in the same time, cumulative infiltration and wetting front migration distance of NaCl solution were greater than CaCl2 solution; compared with NaCl solution, CaCl2 solution took longer time to infiltrate the same amount of water. The dynamic changes of infiltration rate, wetting front and cumulative infiltration were well fitted to the Philip model. [Conclusion] This study only conducted indoor experiment to the infiltration of salt solutions, involving in low concentration and small range. Although it provided some references for the study on the effect of water quality on soil infiltration characteristics and its mechanism, studies in larger areas and with bigger concentrations are demanding.
文摘A novel utilization way of the sludge from wet calcium-based flue gas desulfurization (FGD) processes has been developed in this paper. This study focused on the conversion of the FGD gypsum into α-hemihydrate calcium sulfate by a hydrothermal salt solution method at atmospheric pressure. Experimental study has been carried out in a batch reactor. Qualitative and quantitative analyses were made by DSC/TG thermal analysis, SEM, XRD, metalloscope and chemical analysis. The experimental results showed that the modification of FGD gypsum was controlled by the dissolution and recrystallization mechanisms. With the introduction of FGD gypsum the salt solution was supersaturated, then crystal nucleus of α-hemihydrate calcium sulfate were produced in the solution. With the submicroscopic structure of FGD gypsum crystal changed, the crystal nucleus grew up into α-hemihydrate calcium sulfate crystals. Thus ,the modification of FGD gypsum was fulfilled.
文摘The acid gas absorption in four potassium based amino acid salt solutions was predicted using artificial neural network(ANN). Two hundred fifty-five experimental data points for CO_2 absorption in the four potassium based amino acid salt solutions containing potassium lysinate, potassium prolinate, potassium glycinate, and potassium taurate were used in this modeling. Amine salt solution's type, temperature, equilibrium partial pressure of acid gas, the molar concentration of the solution, molecular weight, and the boiling point were considered as inputs to ANN to prognosticate the capacity of amino acid salt solution to absorb acid gas. Regression analysis was employed to assess the performance of the network. Levenberg–Marquardt back-propagation algorithm was used to train the optimal ANN with 5:12:1 architecture. The model findings indicated that the proposed ANN has the capability to predict precisely the absorption of acid gases in various amino acid salt solutions with Mean Square Error(MSE) value of 0.0011, the Average Absolute Relative Deviation(AARD) percent of 5.54%,and the correlation coefficient(R^2) of 0.9828.
基金Funded by the National Natural Science Foundation of China(51578141)the Major State Basic Research Development Program of China(973 Program)(2015CB655102)+1 种基金the Program Most of China(2016YFE0118200)the support of China Scholarship Council
文摘Several action regimes were employed, namely, those exposed to solutions containing single and/or composite chloride and sulfate salts, and under wet-dry cycles and/or flexural loading. The variations in dynamic modulus of elasticity(Erd values) were monitored, as well as the key factor impacting on the chloride ingress when concrete subjected to multiple action regimes was identified by the method of Grey Relation Analysis(GRA). The changes in micro-structures and mineral products of interior concrete after different action regimes were investigated by means of X-ray diffraction(XRD), mercury intrusion technique(MIP), and scanning electron microscopy(SEM). The test results showed that the cyclic wet-dry accelerated the deterioration of OPC concrete more than the action of 35% flexural loading based on the results of Erd values and the GEA. The analyses from micro-structures could give certain explanations to the change in Erd values under different action regimes.
文摘The NaF-CaF_2 system has been studied by molecular dynamics simulation.The pair correlation functions between cations and anions and the bond angle distributions of cation and anion triplets have been obtained.The bridging and complexing in the system are discussed based on the pair correlation functions and bond angle distributions.The results simulated show that the F^- ions around a Ca^(2+)ion do not form tetrahedron coordination,so some of small complexing clusters such as CaF_4^(2-)are hardly found.A possible structure of F^- ions around Ca^(2+)ions is that three Ca^(2+)ions constitute an equilateral triangle through three Ca-F-Ca bridges and two F^- ions are located over and under the center of the right triangle,respectively.Meanwhile,on the outside of the triangle,every Ca^(2+)ion has other two F^- ions as its neighbors.
文摘This paper study stability of saturated salt solutions cells at 25 ℃. These cells were prepared and measured at National Institute for Standard (NIS-Egypt) to study the stability of the saturated salt solutions. The study was carried out using three saturated salt solutions, which are Potassium Acetate 22.5%, Potassium Iodide 68.9% and Potassium Sulphate 97.3% to cover low, medium and high relative humidity. The study was carried out using different shapes and volumes half liter spherical, liter spherical and liter conical per each salt which was prepared. The apparatus which used in measurement system in the first time are the same which used after ten years. The results show that the change of relative humidity value after ten years ranged from 0.1% to 0.7%. This value is suitable within uncertainty + 2%. The period of stability for each run for all cells was found to be more than five hours and this period enough for calibration. The measurements show that the cells are stable for more than ten years with accepted value.
基金Sci.and Tech. Ministry of Fujian (2005I010)Natural Sci. Foundation of Fujian (C0410006).
文摘A series of nonionic polyacrylamide hydrogels, using acrylamide as monomer and N,N'-methylene diacrylamide as crosslinking agent, were prepared by the free radical polymerization in aqueous solution. Swelling equilibria for the gels were carried out in aqueous solutions of NaCl, KCI, CaCl2, Na2HPO4 and K2HPO4 with concentration ranging from 10^-3 to 5mol/kgH2O at 25 ℃. Experimental results revealed that the chlorides and phosphates cause a different behavior at higher salt concentration. The swelling ratio increases with increasing concentration of chlorides salts, while decreases with the increased phosphates salt concentration. The phenomena seem to be related to the different interactions of chloride and hydrogen phosphate ions with the network groups. Furthermore, the effects of different concentration of crosslinking agent and total monomers on gel swelling performance were also investigated.
文摘Solutions of metals in molten salts present a rich phenomenology: localisatlon of electrons in disordered ionic media, activated electron transport increasing with metal concentration towards a nonmetal-metal (NM-M) transition, and liquid-liquid phase separation. A brief review of progress in the study of these systems is given in this article, with main focus on the NM-M transition. After recalling the known NM-M behaviour of the component elements in the case of expanded fluid alkali metals and mercury and of solid halogens under pressure, the article focuses on liquid metal-molten salt solutions and traces the different NM-M behaviours of the alkalis in their halides and of metals added to polyvalent metal halides.
文摘An Mg-Zn-Mn-Ca alloy with high Zn content was fabricated by vacuum melting. The as-cast microstructure was investigated using XRD, SEM and EDS. It was shown that the alloy was composed of α-Mg, strip-like Ca2Mg6Zn3 and a few Mn- containing phases. Most of the Ca2Mg6Zn3 phase was distributed at grain boundaries while Mn-containing particles were deposited within grains. The as-cast samples were immersed in a Hank's balanced salt solution (HBSS) up to 24 h. The corroded surface morphology and cross-section microstructure were analyzed after different time of immersion so as to understand the corrosion behavior of the alloy. During immersion in the HBSS, the alloy corroded homogeneously at the very beginning and then localized corrosion occurred. The secondary phases protruded on the surface due to the dissolution of α-Mg, suggesting micro- galvanic corrosion occurred with secondary phases acting as the cathode and ct-Mg as the anode. Micro-cracks were formed at the interfaces between Ca2Mg6Zn3 and α-Mg, indicating an undermining tendency of the secondary phases.
文摘Rock salt has excellent properties for its use as underground leak‐proof containers for the storage of renewable energy.Salt solution mining has long been used for salt mining,and can now be employed in the construction of underground salt caverns for the storage of hydrogen gas.This paper presents a wide range of methods to study the mineralogy,geochemistry,microstructure and geomechanical characteristics of rock salt,which are important in the engineering of safe underground storage rock salt caverns.The mineralogical composition of rock salt varies and is linked to its depositional environment and diagenetic alterations.The microstructure in rock salt is related to cataclastic deformation,diffusive mass transfer and intracrystalline plastic deformation,which can then be associated with the macrostructural geomechanical behavior.Compared to other types of rock,rock salt exhibits creep at lower temperatures.This behavior can be divided into three phases based on the changes in strain with time.However,at very low effective confining pressure and high deviatoric stress,rock salt can exhibit dilatant behavior,where brittle deformation could compromise the safety of underground gas storage in rock salt caverns.The proposed review presents the impact of purity,geochemistry and water content of rock salt on its geomechanical behavior,and thus,on the safety of the caverns.
基金supported by the National Natural Science Foundation of China(No.91860208)the National Natural Science Foundation of China for Creative Research Groups(No.51921003)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX18_0255)。
文摘Electrochemical milling is a modified technique of traditional electrochemical machining(ECM)that can be used to manufacture some helicopter transmission system parts.The use of rotary tools and an inner-jet electrolyte supply pattern can greatly improve the material removal rate(MRR)in a single pass.However,the feed speed is generally limited to minimize the tool wear.To increase the MRR,electrical discharge machining(EDM)is introduced into the electrochemical milling process.The tool rotation is employed to interrupt the discharge and the high-conductivity salt solution and non-pulsed direct current power supply are also adopted to increase ECM,eventually,a new machining method is proposed,which can be called rotary sinking electrochemical discharge milling(RSECD milling).The mechanism of it is explored in this study by analyzing the machined current,MRR,surface morphology,and tool wear at different applied voltages and feed speeds.Besides,the RSECD milling using the tool with a larger diameter is also conducted to further verify the effectiveness.In particular,the MRR can be increased by 742.5%when using the tool with a diameter of 20 mm at the applied voltage of 20 V.
基金Funded by National Natural Science Foundation of China(No.52178216)Gansu Provincial Science and Technology Programme(No.23JRRA813)。
文摘To investigate the corrosion degradation law and service life of reinforced concrete in various salt solution environments,reinforced concrete specimens were semi-immersed in 3%Na_(2)CO_(3)(N3-0-0),3%Na_(2)CO_(3)+3%NaCl(N3-Cl3-0)and 3%Na_(2)CO_(3)+3%NaCl+3%Na_(2)SO_(4)(N3-Cl3-S3)salt solutions.The electrochemical workstation was used for regular non-destructive testing,and the polarization curve and related electrochemical parameters were used as the macroscopic durability evaluation indicators,while microscopic analysis of steel bar corrosion products was performed in combination with SEM and EDS.In addition,the corrosion current density degradation model of GM(1,1)was established and compared with the modified GM(1,1)-Markov degradation model.The results showed that the prediction error of the GM(1,1)-Markov model was smaller and more accurate than that of GM(1,1).The reinforced concrete specimens in the N3-0-0,N3-Cl3-0 and N3-Cl3-S3 solutions reached the failure state in 3.08,1.67,and 2.30 years,respectively,as predicted by the GM(1,1)-Markov model.According to ESM and EDS microscopic analysis of reinforcement,carbonate had no significant effect on reinforcement corrosion,chloride ions played a dominant role in reinforcement corrosion,and sulfate ion improved concrete's resistance to chloride ion corrosion.Based on GM(1,1)-Markov model,the failure and damage of reinforced concrete in saline soil areas can be quantitatively evaluated in the whole life cycle,which provides a theoretical basis for the early maintenance or reinforcing of reinforced concrete.
基金supported by the National Natural Science Foundation of China (Grant No. 91960204)the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province (Grant No. BK20170031)the Fundamental Research Funds for the Central Universities (Grant No. NE2014104)。
文摘Electrochemical machining(ECM) is becoming increasingly important for the efficient machining of parts with a large machining area. This is an addition challenge for ECM because of the very high machining current. To overcome this difficulty, a direct and effective strategy is to adopt the machining mode that uses a low-concentration electrolyte with a low current density.The purpose of this study is to reveal the electrochemical behaviour and surface morphology in low-concentration electrolyte.The polarization behavior of Ti-48Al-2Cr-2Nb is measured by linear sweep voltammetry and cyclic voltammetry curves. The ηω-j curves demonstrate the special dissolution behaviour of Ti-48Al-2Cr-2Nb at low current densities. The surface morphology,surface quality, and dissolution mechanism are analysed in three low-concentration electrolytes at different current densities after the ECM dissolution experiments. The results demonstrate that Ti-48Al-2Cr-2Nb exhibits three unique dissolution morphologies in the three solutions, and we found that the γ-TiAl phase dissolves faster than the α2-Ti3Al phase. These results also show that 1% NaCl solution is more suitable for Ti-48Al-2Cr-2Nb in ECM compared with the other two solutions, considering its good surface quality, low breakdown potential, and high material removal rate. Later, the dissolution process of the sample in 1% NaCl solution at different corrosion times is revealed. Moreover, a dissolution model is proposed for the electrochemical dissolution behaviour of Ti-48Al-2Cr-2Nb in 1% NaCl solution.
基金supported by the National Natural Science Foundation of China(52103152)China Postdoctoral Science Foundation(2021M690157)Ningbo Natural Science Foundation(2121J206).
文摘Stimuli-responsive hydrogel is regarded as one of the most promising smart soft materials for the next-generation advanced technologies and intelligence robots,but the limited variety of stimulus has become a non-negligible issue restricting its further development.Herein,we develop a new stimulus of“touch”(i.e.,spatial contact with foreign object)for smart materials and propose a flytrap-inspired touch-responsive polymeric hydrogel based on supersaturated salt solution,exhibiting multiple responsive behaviors in crystallization,heat releasing,and electric signal under touch stimulation.Furthermore,utilizing flytrap-like cascade response strategy,a soft actuator with touch-responsive actuation is fabricated by employing the touch-responsive hydrogel and the thermo-responsive hydrogel.This investigation provides a facile and versatile strategy to design touch-responsive smart materials,enabling a profound potential application in intelligence areas.
基金supported by the National Basic Research Program of China(2009CB623106)the National Science Foundation for Post-doctoral Scientists of China(2012M520288)
文摘The elastic behavior of saturated porous materi- als under undrained freezing is investigated by using a poro- mechanical approach. Thermodynamic equilibria are used to describe the crystallization process of the partially frozen solution in bulk state and confined state in pores. By phase transition at freezing, fusion energy, thermal contraction of solid, solution and ice crystals, volume changes of crystallization build up remarkable pore pressure that induces expansion or shrinkage of solid matrix. Owing to the lower chemical potential when pore water mixes with salts, fewer ice forms in pores. Penetration of ice into the porous materials increases the capillary pressure, but limits effect on the pore liquid pressure and the strain of solid matrix. On the contrary, the pore pressure induced by solution density rises as salt concentration increases and causes significant shrinkage of solid matrix.
文摘The macroporous anion exchangers with long-chained cross-linking agents were investigated for the tungsten recovery from salt solutions.The physical-chemical characteristics of these sorbents were studied by means of sorption-desorption experiment aswell as electron and IR-spectroscopy.The anion exchangers on the basis of macroporous copolymers of methylacrylate and divinyl-ester of diethyleneglycol or tetravinyl-ester of pentaerythritol possess the exchange capacity to tungsten 2--5 times greater than the porous anion exchangers on the basis of styrene and divinylbenzene,therefore they can be used for selective tungsten recovery from comulex salt solutions.
基金National Natural Science Foundation of China(Grant No.41977214)the National Key R&D Program of China(Grant No.2019YFC1520500)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z013008)for the financial supports。
文摘Bentonite-sand mixtures are widely used in engineering barrier of deep geological disposal of high-level radioactive nuclear waste and anti-seepage barrier of civil geotechnical engineering.Under the action of groundwater solution infiltration and external stress,the hydro-mechanical(HM)behaviour of bentonitesand mixtures,i.e.the swelling characteristics and permeability,will change.Once the anti-seepage and filtration effect is weakened or lost,the pollutants will spread to the biosphere.Therefore,it is necessary to study the swelling characteristics and permeability of bentonite-sand mixtures under coupled mechanochemical(MC)effect and to establish corresponding prediction model.For this reason,swelling tests under salt solution with different concentrations are conducted on pure bentonite and its mixtures with 30%,70%and 90%sand contents,the compression tests are carried out on saturated samples,and the saturated permeability coefficient k of the sample under each load is calculated by Terzaghi’s one-dimensional consolidation theory.The concepts of true effective stress pe,montmorillonite void ratio em and critical sand content as are introduced to determine the em-pe relationship and finally the k-em relationship of bentonite-sand mixtures.It is found that when the sand content aas,the em-pe relationship of the mixture is linear and independent of the salt solution concentration,and when a>as,the em-pe relationship of bentonite-sand mixture is bi-linear with the true effective deviatoric stress pesa as the intersection.In addition,the em-k relationship also shows the linear trend when aas,and the slope of the line increases with the increase of the salt solution concentration.When a>as,the k-em relationship will deviate from the linear relationship.Moreover,the larger the sand content is,the farther the deviation is.On the basis of summing the regularity,a model for predicting the HM behaviour of bentonite-sand mixture under the coupled MC effect is proposed.By comparing the swelling and permeability test results with model prediction results of different types of bentonite and its sand mixtures,the predictive model is verified.The study on the HM behaviour of bentonite-sand mixtures under salt solution infiltration and the model establishment can provide experimental and theoretical basis for the design and construction of anti-seepage engineering by bentonite-sand mixtures.
文摘A comparison of Arternia cysts hatching (Artemia franciscana) were conducted on bleaching and non-bleaching with sodium hypochloride on five dilution of salt solution by using sea water, sea salt solution, artificial sea salt solutions, iodine added cooking salt solution, and rock salt solutions. All solutions were adjusted at 30 ppt of salinity in 1 litter cylinder. The experiment was carried out with Factorial Experiment in CRD. After 24 hours, a randomized count of living Artemia was taken a photograph of Artemia size by stereo microscope. A statistic analysis showed that all data of bleaching and non-bleaching were no significant difference (P 〉 0.05). The hatching ability of Artemia cysts in solutions was examined and the results showed that sea salt solution was 327.33 × 103.4. 28,536.5263 Nauplii/liter, sea water 316 ×10^3± 20,420.5779 Nauplii/liter, artificial sea salt solutions 314.33× 10^3 ± 34,268.5473 Nauplii/liter, iodine added cooking salt solution 309.66 ± 10^3 .4- 22,898.3260 Nauplii/liter, and rock salt solutions 305.33 ± 10^3 ± 25,579.9401 Nauplii/liter, respectively. The body length of Artemia was compared and the data showed that there was no significant difference (P 〉 0.05). The highest body length was found in sea salt solution 527.32 ± 4.70μm, sea water 521.65±8.51 μm, artificial sea salt solutions 522.08 ± 10.04 μm, iodine added cooking salt solution 522.67 ±7.87 μm, and rock salt solutions 516.33 ±11.15μm, respectively.
文摘Determining osmotic suction from the electrical conductivity(EC)of soil pore water was widely reported in the literature.However,while dealing with unsaturated soils,they do not have enough soil pore water to be extracted for a reliable measurement of EC.In this paper,the chilled-mirror dew-point hygrometer and contact filter paper method were used to determine the total and matric suctions for low-plasticity soils with different salinities(0.05‰,2.1‰,and 6.76‰).A new piecewise function was proposed to calculate the osmotic suction,with the piecewise point corresponding to the first occurrence of precipitated salt in mixed salt solutions(synthetic seawater).EC,ion and salt concentrations used for osmotic suction calculation were transformed from the established relationships of mixed salt solution instead of experimental measurement.The calculated osmotic suction by the proposed equation and the equations in the literature was compared with the indirectly measured one(the difference between the measured total and matric suctions).Results showed that the calculated osmotic suction,especially the one calculated using the proposed function,was in fair agreement with the indirectly measured data(especially for specimens with higher salinity of 6.76‰),suggesting that the transformation of EC and concentrations from the established relationship is a good alternative to direct measurement for lowplasticity soil.In particular,the proposed method could be applied to unsaturated low-plasticity soils which do not have enough soil pore water for a proper EC measurement.
基金Projects(50321402 50374075) supported by the National Natural Science Foundation of Chinaproject(2004CB619204) supported by the National Key Fundamental Research and Development Program of China
文摘The formation ofjarosite in the presence of Acidithiobacillusferrooxidans (A. ferrooxidans) was researched to ascertain the conditions of producing minimum precipitation. The effects of salt concentration and pH on the characteristics ofjarosite formed in K2SO4/(NHa)2SOa-FeSO4 inorganic salt solution and 9K medium were studied by using the measurements of scanning electron microscope, X-ray diffraction, Fourierism transform infrared analysis, thermogravity/differential thermogravity analysis and particle size analysis to evaluate the product. The results indicate that the formation of jarosite begins when A. ferrooxidans reaches logarithmic growth phase in 9K medium, and a higher pH value is beneficial to the formation of jarosite. The jarosite formed in 9K medium has smaller and more concentrative particle size and smoother surface than that formed in inorganic salt solution.