Polyamines play important roles in plant tolerance to environmental stress. With the aim of investigating the possible involvement of putrescine (Put) in salt-tolerance mechanisms in vegetable soybean roots, exogeno...Polyamines play important roles in plant tolerance to environmental stress. With the aim of investigating the possible involvement of putrescine (Put) in salt-tolerance mechanisms in vegetable soybean roots, exogenous Put (10 mmol L") and its biosynthetic inhibitor D-arginine (D-Arg) (0.5 mmol L-1) were added to nutrient solution when vegetable soybean (Glycine max L. cv. Huning 95-1) seedlings were exposed to 100 mmol L^-11 sodium chloride (NaCl). The results showed that Put ameliorated but D-Arg aggravated the detrimental effects of NaCl on plant growth and biomass production. Under NaCl stress, levels of free, soluble conjugated and insoluble bound types of Put in roots of vegetable soybean were reduced, whereas those of free, soluble conjugated, and insoluble bound types of spermidine (Spd) and spermine (Spm) were increased. Exogenous Put eliminated the decrease in Put but promoted the increase of Spd and Spm. However, these changes could be reversed by D-Arg. Under NaCl stress, activities of arginine decarboxylase (ADC), S-adenosylmethionine decarboxylase (SAMDC), diamine oxidase (DAO), and polyamine oxidase (PAO) were induced, with exogenous Put promoting and D-Arg reversing these changes. Furthermore, NaCl stress decreased activities of antioxidant enzymes. Exogenous Put alleviated but D-Arg exaggerated these effects of NaCl stress, resulting in the same changes in membrane damage and reactive oxygen species (ROS) production. These results indicated that Put plays a positive role in vegetable soybean roots by activating antioxidant enzymes and thereby attenuating oxidative damage.展开更多
AtNHX1 gene encoding the Na ^+/H ^+ antiport on the vacuole membrane of Arabidopsis was transferred into small bud tips of 1-3mm in length derived from immature inflorescence cultures of six genotypes of beet ( Bet...AtNHX1 gene encoding the Na ^+/H ^+ antiport on the vacuole membrane of Arabidopsis was transferred into small bud tips of 1-3mm in length derived from immature inflorescence cultures of six genotypes of beet ( Beta vulgaris L. ) by the infection of Agrobacterium tumefaciens and transgenic plants with improved salt-tolerance were obtained. When transgenic plants at 5-leaf stage were potted in sand and irrigated with solutions containing a range of concentrations of NaCl (171-513mM), they showed minor symptoms of damage from salinity and better tolerance than the controls. There were considerable discrepancies of salt-tolerance between transgenic plants originated from the same genotype and also between different genotypes. After vernalization, bolting transgenic plants were enveloped with two layers of gauzes for self-pollination. T1 seedlings tolerant to 342-427mM NaCl were obtained respectively. These results revealed that it was feasible to improve salt-tolerance of beets by the introduction of AtNHX1 gene into cultured bud cells.展开更多
Zostera marina, a monocotyledonous angiosperm, is one of the most important seagrass species. To inves- tigate the salt-tolerance mechanism and discover salt-tolerant genes in Z. marina, a cDNA library was con- struct...Zostera marina, a monocotyledonous angiosperm, is one of the most important seagrass species. To inves- tigate the salt-tolerance mechanism and discover salt-tolerant genes in Z. marina, a cDNA library was con- structed. Single-pass sequencing of the 5' ends of 4 081 clones yielded 4 002 high quality expressed sequence tags (ESTs), which were assembled into 241 contigs and 1 673 singletons, representing 1 914 unigenes. The average length of the ESTs was 582 bp, with sizes ranging from 100-1 500 bp. Basic Local Alignment Search Tool (BLASTX) analysis revealed that 1 664 unigenes had significant homology to known genes in the Na- tional Center for Biotechnology Information (NCBI) non-redundant (nr) database (E-value≤5-10). Among them, the two most abundant genes encoded metallothionein (157 ESTs) and chlorophyll a/b-binding pro- tein (38 ESTs), accounting for 7.1% and 1.7% of the total ESTs, respectively. Using Kyoto Encyclopedia of Genes and Genomes (KEGG), 1 462 unigenes were assigned to 1 161 pathways (E-value≤5-10). A total of 938 unigenes were assigned Gene Ontology (GO) terms based on the GO hierarchy analysis, and InterProScan searches recognized 1 003 InterPro families. Three genes for metallothionein in Z. marina that belonged to Class II was identified. Results of this study will improve understanding of the molecular mechanisms of saline tolerance in Z. marina.展开更多
Because the lack of detailed study of biological decolorization in high salt dye wastewater, it is still difficult to evaluate the biological treatment on high-salinity dye wastewater. The experiments were carried out...Because the lack of detailed study of biological decolorization in high salt dye wastewater, it is still difficult to evaluate the biological treatment on high-salinity dye wastewater. The experiments were carried out to study the salt-tolerant bacteria, which is useful in the treatment of high-salinity colored wastewater. Simulated wastewater containing 5-150 g/L salt (NaCI) and 50-2000 mg/L Reactive Brilliant Red K-2BP was treated with three salt-tolerant mixed cultures (CAS, TAS, DSAS), which were under a gradually acclimated procedure. With the increase of concentrations of salt and dye, the decolorization became low. The abilities of decolorization of dyes wastewater by three mixed cultures (CAS, TAS, DSAS) were studied, CAS and DSAS mixed cultures showed more active for the treatment of high-salinity colored wastewater than TAS mixed cultures. The results suggested that there might be a simple process for the high salt wastewater treatment, which could be incorporated into conventional activated sludge plants.展开更多
The cellulase cocktail produced by marine Aspergillus niger exhibits a property of salt-tolerance,which is of great potential in cellulose degradation in high salt environment.In order to explain the mechanism on the ...The cellulase cocktail produced by marine Aspergillus niger exhibits a property of salt-tolerance,which is of great potential in cellulose degradation in high salt environment.In order to explain the mechanism on the salttolerance of the cellulase cocktail produced by marine A.niger,six cellulase components(AnCel6,AnCel7A,AnCel7B,AnEGL,AnBGL1 and AnBGL2)were obtained by directed expression.Studies on their enzymatic properties revealed that oneβ-glucosidase(AnBGL2)and one endoglucanase(AnEGL)exhibited an outstanding salttolerant property,and one cellobiohydrolase(AnCel7B)exhibited a certain salt-tolerant property.Subsequent study revealed that the salt-tolerant An EGL and AnCel7B endowed the cellulase cocktail with stronger salttolerant property,while the salt-tolerant An BGL2 had no positive effect.Moreover,after overexpression of AnCel6,AnCel7A,AnCel7B and AnEGL,the activity of cellulase cocktail increased by 80%,70%,63%and 68%,respectively.However,the activity of cellulase cocktail was not improved after overexpression of AnBGL1 and AnBGL2.After mixed-strain fermentation with cellobiohydrolase recombinants(cel6 a,cel7a and cel7b recombinants)and endoglucanase recombinant(egl recombinant),the the activity of cellulase cocktail increased by 114%,102%and91%,respectively.展开更多
A novel strain of Micrococcus sp.DUT_AHX,which was isolated from the sludge of a nitrobenzene(NB)-manufacturing plant and could utilize NB as the sole carbon source,was identified on the basis of physiological and bio...A novel strain of Micrococcus sp.DUT_AHX,which was isolated from the sludge of a nitrobenzene(NB)-manufacturing plant and could utilize NB as the sole carbon source,was identified on the basis of physiological and biochemical tests and 16S ribosomal DNA(rDNA)sequence analysis.It can grow at the temperature up to 40℃or in the presence of NaCl concentration up to 12 g/L in Luria-Bertani(LB)medium.The optimal degradation conditions are as follows:temperature 37℃,pH 7.0,and shaking speed 150 r/min.The strain involves a partial reductive pathway due to the release of ammonia and can also utilize 2-aminophenol as the sole carbon source.Furthermore,the enzyme activity tests show that crude extracts of NB-grown strain DUT_AHX mainly contain 2-aminophenol 1,6-dioxygenase activity.The exploitation of salt-tolerant bacteria will be a remarkable improvement in NB bioremediation and wastewater treatment at high salinity and high temperature.展开更多
The rheological properties of salt-tolerant partially hydrolyzed polyacrylamide(HPAM)solutions with molecular of 2.5×107 g/mol at different concentrations were measured in steady-state shear flow mode by Haake Rh...The rheological properties of salt-tolerant partially hydrolyzed polyacrylamide(HPAM)solutions with molecular of 2.5×107 g/mol at different concentrations were measured in steady-state shear flow mode by Haake Rheostress 150 rheometer.Three constitutive equations(Oldroyd four constant model,Guesekus model and FENE-P model) were used for describing the apparent viscosity and first normal stress difference.The apparent viscosity of salt-tolerant HPAM solutions appears a first Newtonian zone when the shear rate is approximately lower than 0.2 s-1.At high shear rate,the HPAM solutions show shear-thinning and elasticity.The results show that the FENE-P model has the best agreement between theoretical and experimental data within the available shear rate range.The material parameters are useful for numerical analysis of polymer solution flow fields.展开更多
Directing at the characteristics of coastal mudfiat saline and alkaline land, the yield of salt-tolerant Spartina and rice could reach 5 925-8 280 kg/hm^2 by the techniques of land and water resource utilization, farm...Directing at the characteristics of coastal mudfiat saline and alkaline land, the yield of salt-tolerant Spartina and rice could reach 5 925-8 280 kg/hm^2 by the techniques of land and water resource utilization, farming improvement, construction of matched water system, seed selection and treatment, water direct seeding, seedling raising on seedbed, field transplanting, weeding, nutrient and water management, and disease and pest control, providing a scientific basis for the cultivation of Spartina and Rice in coast mudflat.展开更多
[Objective] This study was to screen a salt-tolerant wheat variety in Dongying, a city in the center of the Yellow River Delta with a large area of coastal saline soil. [Method] Total 9 salt-tolerant, stress-resistant...[Objective] This study was to screen a salt-tolerant wheat variety in Dongying, a city in the center of the Yellow River Delta with a large area of coastal saline soil. [Method] Total 9 salt-tolerant, stress-resistant and high-yielding wheat varieties (lines) were introduced, and they were cultivated in the saline soil with total salt content of 3-4 g/kg with Dekang 961 as the control. [Result] The yields of Jinan 18, Yanjian 14 and Shanrong 3 were all significantly higher than that of Dekang 961 (P〈0.05). These three varieties (lines) all ripen before June 13 with moderate growth period that does not affect the seeding of next-season crop. [Conclusion] Jinan 18, Yanjian 14 and Shanrong 3 are suitable for planting in light and median saline soil in the Yellow River Delta.展开更多
Sodic soils have immense productivity potential, if managed through proper technology interventions. Biocompost is prepared by composting pressmud (a sugar industry byproduct) received from cane juice filtration and s...Sodic soils have immense productivity potential, if managed through proper technology interventions. Biocompost is prepared by composting pressmud (a sugar industry byproduct) received from cane juice filtration and spent wash received from distilleries through microbial aerobic decomposition and can be used to reclaim sodic soils. Field experiments were conducted during the wet season of 2011 and 2012 to study the effect of incorporation of biocompost in sodic soil with four treatments: T1—Control, T2—Biocompost at 2 t ha-1, T3—Biocompost at 4 t ha-1 and T4—Biocompost at 6 t ha-1. The two promising salt tolerant rice varieties preferred by farmers, Narendra usar 3 and NDR 359 were used as test crops, which can produce yields ranging between 2-4 t ha-1 in soil having a pH range of 9.2 to 10.5. Among the different doses of biocompost tested, application of biocompost at 6 t ha-1 registered highest yields, enabled by a higher biomass, ear bearing tiller (EBT), and grain fertility in both varieties. Narendra usar 3 was more responsive to treatments even at lower doses of biocompost than NDR 359, but NDR 359 yielded slightly higher than Narendra usar 3 in all treatments. Soil health was also improved evidently on better fertility and low soil pH and EC at harvest. Thus, biocompost can be considered as a commercially viable, environmentally acceptable and practically enforceable option for improving the crop productivity and soil fertility status.展开更多
Salinization of soil is a worldwide problem concerning resources and ecology,especially serious in coastal areas.Testing of 26 sorts of data or parameters are carried out on leaves of 22 plant species(in 24 plant vari...Salinization of soil is a worldwide problem concerning resources and ecology,especially serious in coastal areas.Testing of 26 sorts of data or parameters are carried out on leaves of 22 plant species(in 24 plant variety) of existing main salt-tolerant plant of the Yellow River Delta region.Data or parameters include the following ele-ments:contents of K+,Na+,Ca2+,Mg2+ and Cl-,contents of protein,fat,total energy,ash and contents of 17 amino acids.The results show that these tested plants have economic values.For example,according to their uses,they can be divided into edible plants,forage plants,medicine or health plants,and some of them can be used for multipurposes.These plants have played important roles in the sustainable utilization of plant resources in coastal areas.This paper has taken evaluations on the economic uses of salt-tolerant plants and given suggestions for saline soil improvement and resource utilization in coastal areas.Based on the results of investigation and experiments,we suppose that the salt-tolerant plants in coastal areas can be grouped into 9 main groups according to their economic value:pioneer plants for saline land improvement,medicine,edible and forage plants,industry material,forestation,breeding material,energy plants and eco-tourism resources.展开更多
It has been proposed that salt-tolerant plant could be used as a feed resource for ruminants whereby salt would be removed from salinized land (Asian -Aust. J. Anim. Sci. (2002) 15:998 -1001). Ceratoides arborescens (...It has been proposed that salt-tolerant plant could be used as a feed resource for ruminants whereby salt would be removed from salinized land (Asian -Aust. J. Anim. Sci. (2002) 15:998 -1001). Ceratoides arborescens (Losinsk.) Tsien et C. G. Ma is known as a drought-and salt-tolerant plant,a kind of shrubs, growing in semi-arid land of Inner Mongolia. Because the covering effect of the perennial plant as a mulch over the soil might be expected, the optimum covering effect would be obtained after the growth period.The perennial plant produces seeds around summer and end its growth thereafter. Nutrient value of the perennial salt-tolerant plant, however,had not been reported in flowering period at different year. It is necessary to know the ruminal degradability of the plants of each growing year in order to determine the regimen to diet for ruminants. The present experiment,therefore,was undertaken to analyze the digestibility and chemical composition of Ceratoides arborescens as feed for ruminants.展开更多
New lines of wheat ( Triticum aestivum L.) was obtained by introducing the DNA of sorghum (Sorghum vulgare Pers.) into wheat cultivar 'Longchun 13'. The changes of respiratory pathway, contents of protein, Na+...New lines of wheat ( Triticum aestivum L.) was obtained by introducing the DNA of sorghum (Sorghum vulgare Pers.) into wheat cultivar 'Longchun 13'. The changes of respiratory pathway, contents of protein, Na+ and K+ in the leaves and roots of the new lines of wheat under salt stress were determined and compared with the control cultivar, 'Longchun 13'. The decrease of the content of K+ was observed with the increase of NaCl concentrations, but the decrease was more in the control than that in the new lines, and more in roots than in leaves. Content of proline and Na+ in both two wheats lines increased greatly, but the former increased more significantly in the new lines and the latter more significantly in control both in leaves and roots. The operation of the cyanide-resistant pathway of respiration was enhanced at different degrees after salt stress and it increased much more in roots and leaves of the control plant than that in the new lines, but the cytochrome pathway of electron transport was still the main one consistently. The possible significance of these changes was discussed.展开更多
The major emphasis of this review is recent progress in growth and physiological responses under salt stress and approaches for enhancing salt tolerance of faba bean. The aim is to reveal physiology and molecular mech...The major emphasis of this review is recent progress in growth and physiological responses under salt stress and approaches for enhancing salt tolerance of faba bean. The aim is to reveal physiology and molecular mechanisms of salt stress on faba bean and to provide reference bases for breeding new salt-tolerant faba bean varieties. Furthermore, the future research direction of broad bean salt resistance is forecasted.展开更多
Quantitative trait loci (QTLs) controlling salt-tolerance at the seedling stage in rice (Oryza sativa L.) were identified by interval mapping (SIM) and composite interval mapping (CIM) using a doubled haploid populati...Quantitative trait loci (QTLs) controlling salt-tolerance at the seedling stage in rice (Oryza sativa L.) were identified by interval mapping (SIM) and composite interval mapping (CIM) using a doubled haploid population ZJDH and its high resolution genetic linkage map. The population was derived from an inter-subspecific cross between an indica variety Zhaiyeqing8 (ZYQ8) and a japonica variety Jingxi17 (JX17). Analysis of survival days of seedlings treated with 0.7% NaCl revealed that a major salt-tolerance quantitative trait locus (QTL), Std, was present between markers RG612 and C131 on chromosome 1 when using both MAPMAKER/QTL 1.1 and PLABQTL 1.0 (SIM).Its allele which contributes to salt-tolerance was from ZYQ8. In addition, seven more QTLs which give additive effect on salt-tolerance are identified when using PLABQTL(CIM), and most of them were from JX17.展开更多
A temperature-resistant, salt-tolerant polyacrylamide, hydrophobically associating polymer (HAP), was synthesized in the State Key Laboratory of Heavy Oil Processing. The rheological behavior of HAP solution was inv...A temperature-resistant, salt-tolerant polyacrylamide, hydrophobically associating polymer (HAP), was synthesized in the State Key Laboratory of Heavy Oil Processing. The rheological behavior of HAP solution was investigated by means of flow experiments in porous media and by using a HAAKE RS600 rheometer. The results of Nuclepore membrane filtration showed that filtration time increased sharply when the critical association concentration was reached. Shear rate had a greater impact on viscosity and shear stress with increasing HAP concentration. The HAP solution with a concentration of 100 mg/L (salinity 32,868 mg/L) exhibited negative thixotropy. However, at the same salinity the HAP solution showed thixotropy and its viscosity became greater when the polymer concentration increased to 1,500 mg/L. The flow experiments in cemented core samples indicated that the resistance factor and residual resistance factor of the HAP solution were 31.8 and 12 when polymer concentration and salinity were 1,500 mg/L, 32,868 mg/L at 85℃ respectively, which is favorable for flooding application. Such factors of partially hydrolyzed polyaerylamide 3530S were merely 3.14 and 1.71, so it could not be applied to polymer flooding in the oilfield with high temperature and high salinity.展开更多
In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oil...In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oilfield (Xinjiang, China), which is representative of high-temperature and high-salt oilfields. It has a central reservoir temperature of 140 ℃ and salinity of 22.6× 10^4 mg/L. The temperature-resistant and salt-tolerant performance, interfacial activity, oil displacement efficiency, aging properties, and adsorption properties of the synthesized surfactant were evaluated for Tahe Oilfield flooding. The results showed that the SDB-7 was temperature-resistant and salt-tolerant capacity of 140 ℃ and 22.6×10^4 rag/ L, respectively, oil displacement efficiency under static condition of 84%, and adsorption loss of 0.4 mg/ g (less than 1 mg/g-oil sand). In the heat aging experiment (under the temperature of 140 ℃ for 60 days), the oil-water interracial tension and oil displacement efficiency of SDB-7 were almost unchanged. The oil displacement experiments showed that, under the temperature of 140 ℃ and the salinity of 22.6× 10^4 mg/L, the surfactant SDB-7 can enhance oil recovery by 14.5% after water flooding,suggesting that SDB-7 has a promising application in high temperature and high salinity (HT/HS) reservoir.展开更多
In this paper,we reviewed the progress in the application of stable isotope techniques to the study of soil salinization.As a powerful technique,stable isotopes have been widely used in the studies of soil water evapo...In this paper,we reviewed the progress in the application of stable isotope techniques to the study of soil salinization.As a powerful technique,stable isotopes have been widely used in the studies of soil water evaporation,the dynamics of soil salinization and salt-tolerant plant breeding.The impact of single environmental factors on plant isotope composition has been the focus of previous studies.However,the impact of multiple environmental factors on plant isotope composition remains unclear and needs to be carefully studied.In order to gain insights into soil salinization and amelioration,especially soil salinization in arid and semiarid areas,it is essential to employ stable isotope techniques and combine them with other methods,such as located field observation and remote sensing technology.展开更多
Soil salinization is detrimental to the growth and development of flax and ultimately leads to a decrease in yield.However,the molecular mechanism of linseed response to salt stress is still unclear.In this study,a sa...Soil salinization is detrimental to the growth and development of flax and ultimately leads to a decrease in yield.However,the molecular mechanism of linseed response to salt stress is still unclear.In this study,a salt-tolerant(ST)linseed variety STS and a salt-sensitive(SS)variety DYM were selected as experiment materials.Bulk segregation analysis and whole-genome resequencing technologies were performed to map salt tolerance quantitative trait loci(QTL).A total of 38,625 QTL loci were identified.Fifteen genes(which were not annotated in the reference genome)were identified within a 2.597 Mb region in chromosome 1.Two salt tolerance candidate genes Lus.o.m.scaffold91.141 and Lus.o.m.Scaffold1.14 encoding WD40 and cytochrome P450 were identified by predicting protein functions.Previous studies showed that WD40 and cytochrome P450 could significantly improve plant salt stress tolerance.In this paper,results showed that Lus.o.m.scaffold91.141 and Lus.o.m.Scaffold1.14 might be involved in response to salt stress in lineseed.The fine mapping and functional analysis of these genes provide a molecular breeding basis for the genetic improvement of high salt-tolerant linseed varieties.展开更多
Halophilic alga Dunaliella bardawil (Chlorophyceae) was cultivated in artificialseawater (containing 3 .0, 1. 5 or 0. 5 mol/L of NaCl respectively) for at least two weeks; total RNAswere then extracted and 8 stable di...Halophilic alga Dunaliella bardawil (Chlorophyceae) was cultivated in artificialseawater (containing 3 .0, 1. 5 or 0. 5 mol/L of NaCl respectively) for at least two weeks; total RNAswere then extracted and 8 stable differential bands were harvested after DDRT-PCR and electrophoresis.The retrieved bands were amplified, subjected to electrophoresis again, and cloned into plasmid pUCm-Trespectively. After exelusion of false positive bands, We obtained a recombinant plasmid pTE containing afragment of cDNA, which was only specilically expressed under high salinity condition. Sequencing of展开更多
基金supported by the National Natural Science Foundation of China(31101538,31000942 and 31000676)the Grand Science and Technology Special Project of Zhejiang Province,China(2010C02006)the Public Welfare Project of Zhejiang Province,China(2011R23A52D04)
文摘Polyamines play important roles in plant tolerance to environmental stress. With the aim of investigating the possible involvement of putrescine (Put) in salt-tolerance mechanisms in vegetable soybean roots, exogenous Put (10 mmol L") and its biosynthetic inhibitor D-arginine (D-Arg) (0.5 mmol L-1) were added to nutrient solution when vegetable soybean (Glycine max L. cv. Huning 95-1) seedlings were exposed to 100 mmol L^-11 sodium chloride (NaCl). The results showed that Put ameliorated but D-Arg aggravated the detrimental effects of NaCl on plant growth and biomass production. Under NaCl stress, levels of free, soluble conjugated and insoluble bound types of Put in roots of vegetable soybean were reduced, whereas those of free, soluble conjugated, and insoluble bound types of spermidine (Spd) and spermine (Spm) were increased. Exogenous Put eliminated the decrease in Put but promoted the increase of Spd and Spm. However, these changes could be reversed by D-Arg. Under NaCl stress, activities of arginine decarboxylase (ADC), S-adenosylmethionine decarboxylase (SAMDC), diamine oxidase (DAO), and polyamine oxidase (PAO) were induced, with exogenous Put promoting and D-Arg reversing these changes. Furthermore, NaCl stress decreased activities of antioxidant enzymes. Exogenous Put alleviated but D-Arg exaggerated these effects of NaCl stress, resulting in the same changes in membrane damage and reactive oxygen species (ROS) production. These results indicated that Put plays a positive role in vegetable soybean roots by activating antioxidant enzymes and thereby attenuating oxidative damage.
文摘AtNHX1 gene encoding the Na ^+/H ^+ antiport on the vacuole membrane of Arabidopsis was transferred into small bud tips of 1-3mm in length derived from immature inflorescence cultures of six genotypes of beet ( Beta vulgaris L. ) by the infection of Agrobacterium tumefaciens and transgenic plants with improved salt-tolerance were obtained. When transgenic plants at 5-leaf stage were potted in sand and irrigated with solutions containing a range of concentrations of NaCl (171-513mM), they showed minor symptoms of damage from salinity and better tolerance than the controls. There were considerable discrepancies of salt-tolerance between transgenic plants originated from the same genotype and also between different genotypes. After vernalization, bolting transgenic plants were enveloped with two layers of gauzes for self-pollination. T1 seedlings tolerant to 342-427mM NaCl were obtained respectively. These results revealed that it was feasible to improve salt-tolerance of beets by the introduction of AtNHX1 gene into cultured bud cells.
基金The Key Science and Technology Program of Shandong Province under contract No. 2012GHY11527Natural Science Foundation of Shandong Province under contract No. Q2007E02+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (New Teachers) under contract No. 20070423027the Public Science and Technology Research Funds Projects of Ocean, State Oceanic Administration of the People’s Republic of China under contract No. 201105021-8
文摘Zostera marina, a monocotyledonous angiosperm, is one of the most important seagrass species. To inves- tigate the salt-tolerance mechanism and discover salt-tolerant genes in Z. marina, a cDNA library was con- structed. Single-pass sequencing of the 5' ends of 4 081 clones yielded 4 002 high quality expressed sequence tags (ESTs), which were assembled into 241 contigs and 1 673 singletons, representing 1 914 unigenes. The average length of the ESTs was 582 bp, with sizes ranging from 100-1 500 bp. Basic Local Alignment Search Tool (BLASTX) analysis revealed that 1 664 unigenes had significant homology to known genes in the Na- tional Center for Biotechnology Information (NCBI) non-redundant (nr) database (E-value≤5-10). Among them, the two most abundant genes encoded metallothionein (157 ESTs) and chlorophyll a/b-binding pro- tein (38 ESTs), accounting for 7.1% and 1.7% of the total ESTs, respectively. Using Kyoto Encyclopedia of Genes and Genomes (KEGG), 1 462 unigenes were assigned to 1 161 pathways (E-value≤5-10). A total of 938 unigenes were assigned Gene Ontology (GO) terms based on the GO hierarchy analysis, and InterProScan searches recognized 1 003 InterPro families. Three genes for metallothionein in Z. marina that belonged to Class II was identified. Results of this study will improve understanding of the molecular mechanisms of saline tolerance in Z. marina.
文摘Because the lack of detailed study of biological decolorization in high salt dye wastewater, it is still difficult to evaluate the biological treatment on high-salinity dye wastewater. The experiments were carried out to study the salt-tolerant bacteria, which is useful in the treatment of high-salinity colored wastewater. Simulated wastewater containing 5-150 g/L salt (NaCI) and 50-2000 mg/L Reactive Brilliant Red K-2BP was treated with three salt-tolerant mixed cultures (CAS, TAS, DSAS), which were under a gradually acclimated procedure. With the increase of concentrations of salt and dye, the decolorization became low. The abilities of decolorization of dyes wastewater by three mixed cultures (CAS, TAS, DSAS) were studied, CAS and DSAS mixed cultures showed more active for the treatment of high-salinity colored wastewater than TAS mixed cultures. The results suggested that there might be a simple process for the high salt wastewater treatment, which could be incorporated into conventional activated sludge plants.
基金supported by National Natural Science Foundation of China(21576233,21878263)Fundamental Research Funds for the Central Universities。
文摘The cellulase cocktail produced by marine Aspergillus niger exhibits a property of salt-tolerance,which is of great potential in cellulose degradation in high salt environment.In order to explain the mechanism on the salttolerance of the cellulase cocktail produced by marine A.niger,six cellulase components(AnCel6,AnCel7A,AnCel7B,AnEGL,AnBGL1 and AnBGL2)were obtained by directed expression.Studies on their enzymatic properties revealed that oneβ-glucosidase(AnBGL2)and one endoglucanase(AnEGL)exhibited an outstanding salttolerant property,and one cellobiohydrolase(AnCel7B)exhibited a certain salt-tolerant property.Subsequent study revealed that the salt-tolerant An EGL and AnCel7B endowed the cellulase cocktail with stronger salttolerant property,while the salt-tolerant An BGL2 had no positive effect.Moreover,after overexpression of AnCel6,AnCel7A,AnCel7B and AnEGL,the activity of cellulase cocktail increased by 80%,70%,63%and 68%,respectively.However,the activity of cellulase cocktail was not improved after overexpression of AnBGL1 and AnBGL2.After mixed-strain fermentation with cellobiohydrolase recombinants(cel6 a,cel7a and cel7b recombinants)and endoglucanase recombinant(egl recombinant),the the activity of cellulase cocktail increased by 114%,102%and91%,respectively.
文摘A novel strain of Micrococcus sp.DUT_AHX,which was isolated from the sludge of a nitrobenzene(NB)-manufacturing plant and could utilize NB as the sole carbon source,was identified on the basis of physiological and biochemical tests and 16S ribosomal DNA(rDNA)sequence analysis.It can grow at the temperature up to 40℃or in the presence of NaCl concentration up to 12 g/L in Luria-Bertani(LB)medium.The optimal degradation conditions are as follows:temperature 37℃,pH 7.0,and shaking speed 150 r/min.The strain involves a partial reductive pathway due to the release of ammonia and can also utilize 2-aminophenol as the sole carbon source.Furthermore,the enzyme activity tests show that crude extracts of NB-grown strain DUT_AHX mainly contain 2-aminophenol 1,6-dioxygenase activity.The exploitation of salt-tolerant bacteria will be a remarkable improvement in NB bioremediation and wastewater treatment at high salinity and high temperature.
基金Project(07JCZDJC02600) supported by the Natural Science Foundation ofTianjin,China
文摘The rheological properties of salt-tolerant partially hydrolyzed polyacrylamide(HPAM)solutions with molecular of 2.5×107 g/mol at different concentrations were measured in steady-state shear flow mode by Haake Rheostress 150 rheometer.Three constitutive equations(Oldroyd four constant model,Guesekus model and FENE-P model) were used for describing the apparent viscosity and first normal stress difference.The apparent viscosity of salt-tolerant HPAM solutions appears a first Newtonian zone when the shear rate is approximately lower than 0.2 s-1.At high shear rate,the HPAM solutions show shear-thinning and elasticity.The results show that the FENE-P model has the best agreement between theoretical and experimental data within the available shear rate range.The material parameters are useful for numerical analysis of polymer solution flow fields.
文摘Directing at the characteristics of coastal mudfiat saline and alkaline land, the yield of salt-tolerant Spartina and rice could reach 5 925-8 280 kg/hm^2 by the techniques of land and water resource utilization, farming improvement, construction of matched water system, seed selection and treatment, water direct seeding, seedling raising on seedbed, field transplanting, weeding, nutrient and water management, and disease and pest control, providing a scientific basis for the cultivation of Spartina and Rice in coast mudflat.
文摘[Objective] This study was to screen a salt-tolerant wheat variety in Dongying, a city in the center of the Yellow River Delta with a large area of coastal saline soil. [Method] Total 9 salt-tolerant, stress-resistant and high-yielding wheat varieties (lines) were introduced, and they were cultivated in the saline soil with total salt content of 3-4 g/kg with Dekang 961 as the control. [Result] The yields of Jinan 18, Yanjian 14 and Shanrong 3 were all significantly higher than that of Dekang 961 (P〈0.05). These three varieties (lines) all ripen before June 13 with moderate growth period that does not affect the seeding of next-season crop. [Conclusion] Jinan 18, Yanjian 14 and Shanrong 3 are suitable for planting in light and median saline soil in the Yellow River Delta.
文摘Sodic soils have immense productivity potential, if managed through proper technology interventions. Biocompost is prepared by composting pressmud (a sugar industry byproduct) received from cane juice filtration and spent wash received from distilleries through microbial aerobic decomposition and can be used to reclaim sodic soils. Field experiments were conducted during the wet season of 2011 and 2012 to study the effect of incorporation of biocompost in sodic soil with four treatments: T1—Control, T2—Biocompost at 2 t ha-1, T3—Biocompost at 4 t ha-1 and T4—Biocompost at 6 t ha-1. The two promising salt tolerant rice varieties preferred by farmers, Narendra usar 3 and NDR 359 were used as test crops, which can produce yields ranging between 2-4 t ha-1 in soil having a pH range of 9.2 to 10.5. Among the different doses of biocompost tested, application of biocompost at 6 t ha-1 registered highest yields, enabled by a higher biomass, ear bearing tiller (EBT), and grain fertility in both varieties. Narendra usar 3 was more responsive to treatments even at lower doses of biocompost than NDR 359, but NDR 359 yielded slightly higher than Narendra usar 3 in all treatments. Soil health was also improved evidently on better fertility and low soil pH and EC at harvest. Thus, biocompost can be considered as a commercially viable, environmentally acceptable and practically enforceable option for improving the crop productivity and soil fertility status.
文摘Salinization of soil is a worldwide problem concerning resources and ecology,especially serious in coastal areas.Testing of 26 sorts of data or parameters are carried out on leaves of 22 plant species(in 24 plant variety) of existing main salt-tolerant plant of the Yellow River Delta region.Data or parameters include the following ele-ments:contents of K+,Na+,Ca2+,Mg2+ and Cl-,contents of protein,fat,total energy,ash and contents of 17 amino acids.The results show that these tested plants have economic values.For example,according to their uses,they can be divided into edible plants,forage plants,medicine or health plants,and some of them can be used for multipurposes.These plants have played important roles in the sustainable utilization of plant resources in coastal areas.This paper has taken evaluations on the economic uses of salt-tolerant plants and given suggestions for saline soil improvement and resource utilization in coastal areas.Based on the results of investigation and experiments,we suppose that the salt-tolerant plants in coastal areas can be grouped into 9 main groups according to their economic value:pioneer plants for saline land improvement,medicine,edible and forage plants,industry material,forestation,breeding material,energy plants and eco-tourism resources.
文摘It has been proposed that salt-tolerant plant could be used as a feed resource for ruminants whereby salt would be removed from salinized land (Asian -Aust. J. Anim. Sci. (2002) 15:998 -1001). Ceratoides arborescens (Losinsk.) Tsien et C. G. Ma is known as a drought-and salt-tolerant plant,a kind of shrubs, growing in semi-arid land of Inner Mongolia. Because the covering effect of the perennial plant as a mulch over the soil might be expected, the optimum covering effect would be obtained after the growth period.The perennial plant produces seeds around summer and end its growth thereafter. Nutrient value of the perennial salt-tolerant plant, however,had not been reported in flowering period at different year. It is necessary to know the ruminal degradability of the plants of each growing year in order to determine the regimen to diet for ruminants. The present experiment,therefore,was undertaken to analyze the digestibility and chemical composition of Ceratoides arborescens as feed for ruminants.
文摘New lines of wheat ( Triticum aestivum L.) was obtained by introducing the DNA of sorghum (Sorghum vulgare Pers.) into wheat cultivar 'Longchun 13'. The changes of respiratory pathway, contents of protein, Na+ and K+ in the leaves and roots of the new lines of wheat under salt stress were determined and compared with the control cultivar, 'Longchun 13'. The decrease of the content of K+ was observed with the increase of NaCl concentrations, but the decrease was more in the control than that in the new lines, and more in roots than in leaves. Content of proline and Na+ in both two wheats lines increased greatly, but the former increased more significantly in the new lines and the latter more significantly in control both in leaves and roots. The operation of the cyanide-resistant pathway of respiration was enhanced at different degrees after salt stress and it increased much more in roots and leaves of the control plant than that in the new lines, but the cytochrome pathway of electron transport was still the main one consistently. The possible significance of these changes was discussed.
基金Supported by the China Agriculture Research System(CARS-09)the Funder for Independent Innovation of Agricultural Sciences in Jiangsu Province(XC(12)5081)~~
文摘The major emphasis of this review is recent progress in growth and physiological responses under salt stress and approaches for enhancing salt tolerance of faba bean. The aim is to reveal physiology and molecular mechanisms of salt stress on faba bean and to provide reference bases for breeding new salt-tolerant faba bean varieties. Furthermore, the future research direction of broad bean salt resistance is forecasted.
文摘Quantitative trait loci (QTLs) controlling salt-tolerance at the seedling stage in rice (Oryza sativa L.) were identified by interval mapping (SIM) and composite interval mapping (CIM) using a doubled haploid population ZJDH and its high resolution genetic linkage map. The population was derived from an inter-subspecific cross between an indica variety Zhaiyeqing8 (ZYQ8) and a japonica variety Jingxi17 (JX17). Analysis of survival days of seedlings treated with 0.7% NaCl revealed that a major salt-tolerance quantitative trait locus (QTL), Std, was present between markers RG612 and C131 on chromosome 1 when using both MAPMAKER/QTL 1.1 and PLABQTL 1.0 (SIM).Its allele which contributes to salt-tolerance was from ZYQ8. In addition, seven more QTLs which give additive effect on salt-tolerance are identified when using PLABQTL(CIM), and most of them were from JX17.
文摘A temperature-resistant, salt-tolerant polyacrylamide, hydrophobically associating polymer (HAP), was synthesized in the State Key Laboratory of Heavy Oil Processing. The rheological behavior of HAP solution was investigated by means of flow experiments in porous media and by using a HAAKE RS600 rheometer. The results of Nuclepore membrane filtration showed that filtration time increased sharply when the critical association concentration was reached. Shear rate had a greater impact on viscosity and shear stress with increasing HAP concentration. The HAP solution with a concentration of 100 mg/L (salinity 32,868 mg/L) exhibited negative thixotropy. However, at the same salinity the HAP solution showed thixotropy and its viscosity became greater when the polymer concentration increased to 1,500 mg/L. The flow experiments in cemented core samples indicated that the resistance factor and residual resistance factor of the HAP solution were 31.8 and 12 when polymer concentration and salinity were 1,500 mg/L, 32,868 mg/L at 85℃ respectively, which is favorable for flooding application. Such factors of partially hydrolyzed polyaerylamide 3530S were merely 3.14 and 1.71, so it could not be applied to polymer flooding in the oilfield with high temperature and high salinity.
基金the China National High Technology Research and Development Program (No. 2013AA064301)National Natural Science Foundation of China (No. 51274210) for financial support
文摘In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oilfield (Xinjiang, China), which is representative of high-temperature and high-salt oilfields. It has a central reservoir temperature of 140 ℃ and salinity of 22.6× 10^4 mg/L. The temperature-resistant and salt-tolerant performance, interfacial activity, oil displacement efficiency, aging properties, and adsorption properties of the synthesized surfactant were evaluated for Tahe Oilfield flooding. The results showed that the SDB-7 was temperature-resistant and salt-tolerant capacity of 140 ℃ and 22.6×10^4 rag/ L, respectively, oil displacement efficiency under static condition of 84%, and adsorption loss of 0.4 mg/ g (less than 1 mg/g-oil sand). In the heat aging experiment (under the temperature of 140 ℃ for 60 days), the oil-water interracial tension and oil displacement efficiency of SDB-7 were almost unchanged. The oil displacement experiments showed that, under the temperature of 140 ℃ and the salinity of 22.6× 10^4 mg/L, the surfactant SDB-7 can enhance oil recovery by 14.5% after water flooding,suggesting that SDB-7 has a promising application in high temperature and high salinity (HT/HS) reservoir.
基金supported by the National Basic Research Program of China (2009CB825101)the National Natural Science Foundation of China (41071032)the West Light Foundation of the Chinese Academy of Sciences (2009)
文摘In this paper,we reviewed the progress in the application of stable isotope techniques to the study of soil salinization.As a powerful technique,stable isotopes have been widely used in the studies of soil water evaporation,the dynamics of soil salinization and salt-tolerant plant breeding.The impact of single environmental factors on plant isotope composition has been the focus of previous studies.However,the impact of multiple environmental factors on plant isotope composition remains unclear and needs to be carefully studied.In order to gain insights into soil salinization and amelioration,especially soil salinization in arid and semiarid areas,it is essential to employ stable isotope techniques and combine them with other methods,such as located field observation and remote sensing technology.
基金financially supported by grants from the National Natural Science Foundation of China (NSFC) (Grant no. 31560347, and 31760426)the China Agriculture Research System (CARS-14)
文摘Soil salinization is detrimental to the growth and development of flax and ultimately leads to a decrease in yield.However,the molecular mechanism of linseed response to salt stress is still unclear.In this study,a salt-tolerant(ST)linseed variety STS and a salt-sensitive(SS)variety DYM were selected as experiment materials.Bulk segregation analysis and whole-genome resequencing technologies were performed to map salt tolerance quantitative trait loci(QTL).A total of 38,625 QTL loci were identified.Fifteen genes(which were not annotated in the reference genome)were identified within a 2.597 Mb region in chromosome 1.Two salt tolerance candidate genes Lus.o.m.scaffold91.141 and Lus.o.m.Scaffold1.14 encoding WD40 and cytochrome P450 were identified by predicting protein functions.Previous studies showed that WD40 and cytochrome P450 could significantly improve plant salt stress tolerance.In this paper,results showed that Lus.o.m.scaffold91.141 and Lus.o.m.Scaffold1.14 might be involved in response to salt stress in lineseed.The fine mapping and functional analysis of these genes provide a molecular breeding basis for the genetic improvement of high salt-tolerant linseed varieties.
基金This work was supported by the Foundation of National Science and Technology Ministry,Grant No.J00-B-014,and Science and Technology Project of Xiamen City,Grant No.350222000104
文摘Halophilic alga Dunaliella bardawil (Chlorophyceae) was cultivated in artificialseawater (containing 3 .0, 1. 5 or 0. 5 mol/L of NaCl respectively) for at least two weeks; total RNAswere then extracted and 8 stable differential bands were harvested after DDRT-PCR and electrophoresis.The retrieved bands were amplified, subjected to electrophoresis again, and cloned into plasmid pUCm-Trespectively. After exelusion of false positive bands, We obtained a recombinant plasmid pTE containing afragment of cDNA, which was only specilically expressed under high salinity condition. Sequencing of