Objective To investigate the anti-inflammation effect and possible mechanism of Salvianic acid A(SAA)in mouse peritoneal macrophages.Methods Peritoneal macrophages were obtained from BALB/c mice.LPS induced nitric oxi...Objective To investigate the anti-inflammation effect and possible mechanism of Salvianic acid A(SAA)in mouse peritoneal macrophages.Methods Peritoneal macrophages were obtained from BALB/c mice.LPS induced nitric oxide(NO),tumor necrosis factor-alpha(TNF-α)and interleukin-6(IL-6)in supernatant,protein expression of inducible nitric oxide synthase(iNOS),matrix metalloproteinase-9(MMP-9)and activation of nuclear factor-kappa B(NF-κB)in the extract were measured.Results SAA strongly inhibited the excessive production of NO,TNF-α and IL-6 in LPS-induced peritoneal macrophages in a concentration-dependent manner and blocked the expression of iNOS and MMP-9.Treatment with LPS alone increased the translocation of NF-κB(p65)from cytosol to the nucleus,but the SAA inhibited the translocation of NF-κB(p65).Conclusions The results showed that SAA had strong anti-inflammatory effects in LPS-stimulated peritoneal macrophages.The important mechanism is due to its inhibition of NF-κB activation.展开更多
Kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson cv. Bruno) was used toinvestigate the effects of acetylsalicylic acid (ASA, 1.0 mmol/L, pH 3.5) and ethylene (100 mL/L) treat-ments on changes at...Kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson cv. Bruno) was used toinvestigate the effects of acetylsalicylic acid (ASA, 1.0 mmol/L, pH 3.5) and ethylene (100 mL/L) treat-ments on changes at endogenous salicylic acid (SA) levels and other senescence-related factors duringfruit ripening and softening at 20 ℃. The level of endogenous SA in ripening fruits declined and a closerelationship was observed between the change at endogenous SA level and the rate of fruit ripening andsoftening. ASA treatment elevated SA level in the fruit, slowed down the increases in lipoxygenase (LOX)and allene oxide synthase (AOS) activities, decreased the O22-. production in the preclimacteric phase andthe early phase of ethylene climacteric rise, maintained the stability of cell membrane, inhibited ethylenebiosynthesis, postponed the onset of the ethylene climacteric, and delayed the process of fruit ripeningand softening. On the contrary, application of ethylene to ripening kiwifruit resulted at a lower SA level, anaccelerated increases in the activities of LOX and AOS and the rate of O22-. production, an elevated relativeelectric conductivity and an advanced onset of ethylene climacteric, and a quicker fruit ripening andsoftening. It is suggested that the effects of ASA on ripening kiwifruit can be attributed to its ability toscavenge O22-. and/or to maintain stability of cell membrane.展开更多
In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond...In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under aci...展开更多
Boron-doped diamond (BDD) film electrodes using Ta as substrates were employed for anodic oxidation of salicylic acid (SA). The effects of operational variables including initial concentration, current density, te...Boron-doped diamond (BDD) film electrodes using Ta as substrates were employed for anodic oxidation of salicylic acid (SA). The effects of operational variables including initial concentration, current density, temperature and pH were examined. The results showed that BDD films deposited on the Ta substrates had high electrocatalytic activity for SA degradation. There was little effect ofpH on SA degradation. The current efficiency (CE) ,aas fbund to be dependent mainly on the initial SA concentration, current density and temperature. Chemical oxygen demand (COD) was reduced from 830 mg/L to 42 mg/L under a current density of200A/m^2 at 30℃.展开更多
Excessive soil salinity is an important constraint limiting the distribution of plants in natural habitats, and is an increasingly severe agricultural problem in arid and semi-arid regions. Higher salinity levels caus...Excessive soil salinity is an important constraint limiting the distribution of plants in natural habitats, and is an increasingly severe agricultural problem in arid and semi-arid regions. Higher salinity levels caused significant reduction in growth parameters like leaf area, leaf length and root and shoot dry weight. Salicylic acid (SA), a plant phenolic is now considered as a hormone-like endogenous regulator, and its role in the defence mechanisms against biotic stressors has been well documented. In recent years its role has been widely investigated in abiotic stress (salinity, drought, water deficit and so on). The aim of the present work was to study the effects of salicylic acid on growth and some physiological characters of salt stressed tomato plants. The presence of salicylic acid at low concentration (0.01 mM) in culture medium riched with NaCl 100 mM (6 g·L^-1) improves the tolerance of tomato cv. Golden Sunrise to salinity. This amelioration results in stimulation of growth and development of plants. The applied of SA in saline medium induce: (i) an increase in chlorophyll content; (ii) a better supply of essential elements in plant growth, such as K+; (iii) a decrease in toxic ions such Na+ and CI in aerial organs; and (iv) an additional synthesis of organic solutes and osmoprotectors like proline and proteins. All these results suggest that salicylic acid could be successfully used in alleviating depressive effects of salt on the productivity of the cultivated tomato.展开更多
Aberrant tumor blood vessels are prone to propel the malignant progression of tumors,and targeting abnormal metabolism of tumor endothelial cells emerges as a promising option to achieve vascular normalization and ant...Aberrant tumor blood vessels are prone to propel the malignant progression of tumors,and targeting abnormal metabolism of tumor endothelial cells emerges as a promising option to achieve vascular normalization and antagonize tumor progression.Herein,we demonstrated that salvianic acid A(SAA)played a pivotal role in contributing to vascular normalization in the tumor-bearing mice,thereby improving delivery and effectiveness of the chemotherapeutic agent.SAA was capable of inhibiting glycolysis and strengthening endothelial junctions in the human umbilical vein endothelial cells(HUVECs)exposed to hypoxia.Mechanistically,SAA was inclined to directly bind to the glycolytic enzyme PKM2,leading to a dramatic decrease in endothelial glycolysis.More importantly,SAA improved the endothelial integrity via activating theβ-Catenin/Claudin-5 signaling axis in a PKM2-dependent manner.Our findings suggest that SAA may serve as a potent agent for inducing tumor vascular normalization.展开更多
以黑果枸杞种子为试材,5种不同浓度SA浸种12 h,将不同浓度NaCl溶液及PEG-6000溶液按不同比例混合模拟20种盐旱交叉胁迫,培养皿滤纸萌发并观测SA处理对盐旱交叉胁迫下黑果枸杞种子萌发指标,分析SA处理对其抗盐旱特性的影响。结果表明:在...以黑果枸杞种子为试材,5种不同浓度SA浸种12 h,将不同浓度NaCl溶液及PEG-6000溶液按不同比例混合模拟20种盐旱交叉胁迫,培养皿滤纸萌发并观测SA处理对盐旱交叉胁迫下黑果枸杞种子萌发指标,分析SA处理对其抗盐旱特性的影响。结果表明:在盐旱交叉胁迫下,随着胁迫强度的增加,黑果枸杞种子的发芽率、发芽势均呈先升后降的趋势,低浓度SA处理组较对照可以提高黑果枸杞种子的发芽率和发芽势,其中S1处理组效果最好;黑果枸杞种子的发芽指数与干旱胁迫程度呈负相关,单一盐胁迫及交叉胁迫下,发芽指数和活力指数先升后降,轻度胁迫和低浓度SA可以在一定程度上提高种子活力;随着干旱胁迫程度的加剧,黑果枸杞幼苗相对根长先增后减;随着盐胁迫的程度加剧,黑果枸杞幼苗相对根长大幅减少。对不同浓度SA浸种后黑果枸杞耐盐旱性进行综合评价,可以看出,低浓度SA浸种可以提高黑果枸杞种子萌发期的耐盐旱性。说明黑果枸杞种子在萌发期对盐旱胁迫有一定的交叉适应性,且盐旱胁迫下,0.05 mM SA处理增强黑果枸杞种子萌发阶段耐盐旱性效果最佳。展开更多
文摘Objective To investigate the anti-inflammation effect and possible mechanism of Salvianic acid A(SAA)in mouse peritoneal macrophages.Methods Peritoneal macrophages were obtained from BALB/c mice.LPS induced nitric oxide(NO),tumor necrosis factor-alpha(TNF-α)and interleukin-6(IL-6)in supernatant,protein expression of inducible nitric oxide synthase(iNOS),matrix metalloproteinase-9(MMP-9)and activation of nuclear factor-kappa B(NF-κB)in the extract were measured.Results SAA strongly inhibited the excessive production of NO,TNF-α and IL-6 in LPS-induced peritoneal macrophages in a concentration-dependent manner and blocked the expression of iNOS and MMP-9.Treatment with LPS alone increased the translocation of NF-κB(p65)from cytosol to the nucleus,but the SAA inhibited the translocation of NF-κB(p65).Conclusions The results showed that SAA had strong anti-inflammatory effects in LPS-stimulated peritoneal macrophages.The important mechanism is due to its inhibition of NF-κB activation.
文摘Kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson cv. Bruno) was used toinvestigate the effects of acetylsalicylic acid (ASA, 1.0 mmol/L, pH 3.5) and ethylene (100 mL/L) treat-ments on changes at endogenous salicylic acid (SA) levels and other senescence-related factors duringfruit ripening and softening at 20 ℃. The level of endogenous SA in ripening fruits declined and a closerelationship was observed between the change at endogenous SA level and the rate of fruit ripening andsoftening. ASA treatment elevated SA level in the fruit, slowed down the increases in lipoxygenase (LOX)and allene oxide synthase (AOS) activities, decreased the O22-. production in the preclimacteric phase andthe early phase of ethylene climacteric rise, maintained the stability of cell membrane, inhibited ethylenebiosynthesis, postponed the onset of the ethylene climacteric, and delayed the process of fruit ripeningand softening. On the contrary, application of ethylene to ripening kiwifruit resulted at a lower SA level, anaccelerated increases in the activities of LOX and AOS and the rate of O22-. production, an elevated relativeelectric conductivity and an advanced onset of ethylene climacteric, and a quicker fruit ripening andsoftening. It is suggested that the effects of ASA on ripening kiwifruit can be attributed to its ability toscavenge O22-. and/or to maintain stability of cell membrane.
文摘In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under aci...
文摘Boron-doped diamond (BDD) film electrodes using Ta as substrates were employed for anodic oxidation of salicylic acid (SA). The effects of operational variables including initial concentration, current density, temperature and pH were examined. The results showed that BDD films deposited on the Ta substrates had high electrocatalytic activity for SA degradation. There was little effect ofpH on SA degradation. The current efficiency (CE) ,aas fbund to be dependent mainly on the initial SA concentration, current density and temperature. Chemical oxygen demand (COD) was reduced from 830 mg/L to 42 mg/L under a current density of200A/m^2 at 30℃.
文摘Excessive soil salinity is an important constraint limiting the distribution of plants in natural habitats, and is an increasingly severe agricultural problem in arid and semi-arid regions. Higher salinity levels caused significant reduction in growth parameters like leaf area, leaf length and root and shoot dry weight. Salicylic acid (SA), a plant phenolic is now considered as a hormone-like endogenous regulator, and its role in the defence mechanisms against biotic stressors has been well documented. In recent years its role has been widely investigated in abiotic stress (salinity, drought, water deficit and so on). The aim of the present work was to study the effects of salicylic acid on growth and some physiological characters of salt stressed tomato plants. The presence of salicylic acid at low concentration (0.01 mM) in culture medium riched with NaCl 100 mM (6 g·L^-1) improves the tolerance of tomato cv. Golden Sunrise to salinity. This amelioration results in stimulation of growth and development of plants. The applied of SA in saline medium induce: (i) an increase in chlorophyll content; (ii) a better supply of essential elements in plant growth, such as K+; (iii) a decrease in toxic ions such Na+ and CI in aerial organs; and (iv) an additional synthesis of organic solutes and osmoprotectors like proline and proteins. All these results suggest that salicylic acid could be successfully used in alleviating depressive effects of salt on the productivity of the cultivated tomato.
基金This work was financially supported by the projects of National Natural Science Foundation of China(82003991,82101844,and 82304953)Natural Science Foundation of Jiangsu Province(BK20230744,China)+1 种基金Jiangsu Specially Appointed Professorship Foundation(013038021001,China)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22-2045 and KYCX23-2038,China).
文摘Aberrant tumor blood vessels are prone to propel the malignant progression of tumors,and targeting abnormal metabolism of tumor endothelial cells emerges as a promising option to achieve vascular normalization and antagonize tumor progression.Herein,we demonstrated that salvianic acid A(SAA)played a pivotal role in contributing to vascular normalization in the tumor-bearing mice,thereby improving delivery and effectiveness of the chemotherapeutic agent.SAA was capable of inhibiting glycolysis and strengthening endothelial junctions in the human umbilical vein endothelial cells(HUVECs)exposed to hypoxia.Mechanistically,SAA was inclined to directly bind to the glycolytic enzyme PKM2,leading to a dramatic decrease in endothelial glycolysis.More importantly,SAA improved the endothelial integrity via activating theβ-Catenin/Claudin-5 signaling axis in a PKM2-dependent manner.Our findings suggest that SAA may serve as a potent agent for inducing tumor vascular normalization.
文摘以黑果枸杞种子为试材,5种不同浓度SA浸种12 h,将不同浓度NaCl溶液及PEG-6000溶液按不同比例混合模拟20种盐旱交叉胁迫,培养皿滤纸萌发并观测SA处理对盐旱交叉胁迫下黑果枸杞种子萌发指标,分析SA处理对其抗盐旱特性的影响。结果表明:在盐旱交叉胁迫下,随着胁迫强度的增加,黑果枸杞种子的发芽率、发芽势均呈先升后降的趋势,低浓度SA处理组较对照可以提高黑果枸杞种子的发芽率和发芽势,其中S1处理组效果最好;黑果枸杞种子的发芽指数与干旱胁迫程度呈负相关,单一盐胁迫及交叉胁迫下,发芽指数和活力指数先升后降,轻度胁迫和低浓度SA可以在一定程度上提高种子活力;随着干旱胁迫程度的加剧,黑果枸杞幼苗相对根长先增后减;随着盐胁迫的程度加剧,黑果枸杞幼苗相对根长大幅减少。对不同浓度SA浸种后黑果枸杞耐盐旱性进行综合评价,可以看出,低浓度SA浸种可以提高黑果枸杞种子萌发期的耐盐旱性。说明黑果枸杞种子在萌发期对盐旱胁迫有一定的交叉适应性,且盐旱胁迫下,0.05 mM SA处理增强黑果枸杞种子萌发阶段耐盐旱性效果最佳。