Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on...Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli...Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.展开更多
The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan P...The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan Plateau region,leading to a rising risk of landslides.The landslide in Banbar County,Xizang(Tibet),have been perturbed by ongoing disturbances from human engineering activities,making it susceptible to instability and displaying distinct features.In this study,small baseline subset synthetic aperture radar interferometry(SBAS-InSAR)technology is used to obtain the Line of Sight(LOS)deformation velocity field in the study area,and then the slope-orientation deformation field of the landslide is obtained according to the spatial geometric relationship between the satellite’s LOS direction and the landslide.Subsequently,the landslide thickness is inverted by applying the mass conservation criterion.The results show that the movement area of the landslide is about 6.57×10^(4)m^(2),and the landslide volume is about 1.45×10^(6)m^(3).The maximum estimated thickness and average thickness of the landslide are 39 m and 22 m,respectively.The thickness estimation results align with the findings from on-site investigation,indicating the applicability of this method to large-scale earth slides.The deformation rate of the landslide exhibits a notable correlation with temperature variations,with rainfall playing a supportive role in the deformation process and displaying a certain lag.Human activities exert the most substantial influence on the spatial heterogeneity of landslide deformation,leading to the direct impact of several prominent deformation areas due to human interventions.Simultaneously,utilizing the long short-term memory(LSTM)model to predict landslide displacement,and the forecast results demonstrate the effectiveness of the LSTM model in predicting landslides that are in a continuous development and movement phase.The landslide is still active,and based on the spatial heterogeneity of landslide deformation,new recommendations have been proposed for the future management of the landslide in order to mitigate potential hazards associated with landslide instability.展开更多
Ovalbumin(OVA)is the major allergenic protein that can induce T helper 2(Th2)-allergic reactions,for which current treatment options are inadequate.In this study,we developed a polymerized hypoallergenic OVA product v...Ovalbumin(OVA)is the major allergenic protein that can induce T helper 2(Th2)-allergic reactions,for which current treatment options are inadequate.In this study,we developed a polymerized hypoallergenic OVA product via laccase/caffeic acid(Lac/CA)-catalyzed crosslinking in conjunction with galactomannan(Man).The formation of high molecular weight crosslinked polymers and the Ig G-binding were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE)and Western blotting.The study indicated that Lac/CA-catalyzed crosslinking plus Man conjugation substantially altered secondary and tertiary structures of OVA along with the variation in surface hydrophobicity.Gastrointestinal digestion stability assay indicated that crosslinked OVA exhibited less resistance in simulated gastric fluid(SGF)and simulated intestinal fluid(SIF).Mouse model study indicated that Lac-Man/OVA ameliorated eosinophilic airway inflammatory response and efficiently downregulated the expression of Th2-related cytokines(interleukin(IL)-4,IL-5,and IL-13),and upregulated IFN-γand IL-10 expression.Stimulation of bone marrow-derived dendritic cells with Lac-Man/OVA suppressed the expression of phenotypic maturation markers(CD80 and CD86)and MHC class II molecules,and suppressed the expression levels of proinflammatory cytokines.The knowledge obtained in the present study offers an effective way to acquire a hypoallergenic OVA product that can have a therapeutic effect in alleviating OVA-induced allergic asthma.展开更多
Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclu...Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.展开更多
In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular...In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular dynamics simulation.In liquid Mg-rich Mg-Y alloys,the strong Mg-Y interaction is determined,which promotes the formation of fivefold symmetric local structure.For Mg-Zn alloys,the weak Mg-Zn interaction results in the fivefold symmetry weakening in the liquid structure.Due to the coexistence of Y and Zn,the strong attractive interaction is introduced in liquid Mg-Y-Zn ternary alloy,and contributes to the clustering of Mg,Y,Zn launched from Zn.What is more,the distribution of local structures becomes closer to that in pure Mg compared with that in binary Mg-Y and Mg-Zn alloys.These results should relate to the origins of the Y/Zn segregation zone and close-packed stacking mode in LPSO structure,which provides a new insight into the formation mechanism of LPSO structure at atomic level.展开更多
The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0...The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively.展开更多
The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from struc...The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.展开更多
Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84...Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84)anionic metal-organic frameworks(MOFs),where NJTU-Bai83=(Me_(2)NH_(2))2[Zn_(3)(trz)_(2)(ox)_(3)]·2H_(2)O and NJTU-Bai84=(Me_(2)NH_(2))[Zn_(3)(trz)_(3)(ox)_(2)]·H_(2)O,respectively.With the[Zn_(2)(ox)4(trz)_(2)]secondary building unit(SBU)in NJTU-Bai83 replaced by the[Zn_(3)(ox)_(2)(trz)_(6)]and planar[Zn(ox)_(2)(trz)_(2)]ones in NJTU-Bai84,2D supramolecular building layers(SBLs)are changed from the A-layer and B-layer to another A-layer,while pillars are transformed from the tetrahedral[Zn(ox)_(2)(trz)_(2)]SBU to the irregular tetrahedral[Zn(ox)_(2)(trz)_(2)]and planar[Zn(ox)_(2)(trz)_(2)]SBUs.Thus,cdq-topological quaternary NJTU-Bai83 is tuned to(4,4,8)-c new topological quinary NJTU-Bai84.Two MOFs were well characterized by powder X-ray diffraction,thermogravimetric analysis,elemental analysis,etc.CCDC:2351819,NJTU-Bai83;2351820,NJTU-Bai84.展开更多
We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogr...We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogravimetry and nitrogen absorption porosimetry on cement past,mercury intrusion porosimetry on mortar,and microhardness test on interface transition zone between mortar and coarse aggregate were conducted to evaluate the hydration degree and characterize the micro-structure.Whilst,tests for the rebound strength,abrasion resistance,and chloride ion impenetrability of concrete were conducted to assess the macro-performance.The experimental results show that,affected by the harsh plateau climate,outward surfaces have lower hydration degrees and worse pore structure than inward surfaces.As the hydration of concrete surface is ongoing after the age of 180 days,both the micro-structure and the macro-performance are continuously improved.In the long-term,either the orientation or the depth towards surface does not significantly affect concrete performance.Surface carbonation brings positive effects on mechanical properties but negative effects on the durability.Additionally,standard test result of chloride ion impenetrability is found significantly affected by the atmospheric pressure.For a same batch of concrete,charge passed in plateau regions is obviously lower than that in common regions.展开更多
Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.How...Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.However,due to the thermo-mechanical coupling effect and the existence of stiffened structure,complex microstructure evolution and uneven microstructure occur easily at the cylindrical wall(CW)and inner rib(IR)of Mg alloy thin-walled CPLIRs during the HFF.In this paper,a modified cellular automaton(CA)model of Mg alloy considering the effects of deformation conditions on material parameters was developed using the artificial neural network(ANN)method.It is found that the ANN-modified CA model exhibits better predictability for the microstructure of hot deformation than the conventional CA model.Furthermore,the microstructure evolution of ZK61 alloy CPLIRs during the HFF was analyzed by coupling the modified CA model and finite element analysis(FEA).The results show that compared with the microstructure at the same layer of the IR,more refined grains and less sufficient DRX resulted from larger strain and strain rate occur at that of the CW;various differences of strain and strain rate in the wall-thickness exist between the CW and IR,which leads to the inhomogeneity of microstructure rising firstly and declining from the inside layer to outside layer;the obtained Hall-Petch relationship between the measured microhardness and predicted grain sizes at the CW and the IR indicates the reliability of the coupled FEA-CA simulation results.展开更多
Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using ...Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.展开更多
In the traditional process, m-phenylenediamine reacts with fuming sulfuric acid at high temperature to get intermediates, and then after dehydration occurs intramolecular rearrangement to get 2,4-diaminobenzenesulfoni...In the traditional process, m-phenylenediamine reacts with fuming sulfuric acid at high temperature to get intermediates, and then after dehydration occurs intramolecular rearrangement to get 2,4-diaminobenzenesulfonic acid. Traditional methods need to consume a lot of fuming sulfuric acid or concentrated sulfuric acid, resulting in high industrial large-scale production cost, more waste, and posing a serious environmental pollution risk. In this thesis, three different sulfonation reagents were used for the sulfonation reaction of m-phenylenediamine, and the reaction mechanisms and crystal structures of the three pathways were investigated. The three routes are: 1) one-step synthesis of monosulfonated compound 1 from raw material and sulfur trioxide (SO<sub>3</sub>);2) rapid reaction of raw material and chlorosulfonic acid to synthesize bisulfonated compound 2;3) direct eutectic crystallization of raw material and ordinary sulfuric acid to obtain compound 3. The crystal structure of the compounds synthesized by three paths was analyzed by X-ray single crystal diffraction, and compound 1 was characterized by NMR, Fourier infrared spectra, UV-visible spectrum and Mass spectrometry. The one-step synthesis of SO<sub>3</sub> as a sulfonation reagent has the advantages of mild reaction conditions, simple operation and low cost.展开更多
With the rapid development of information technology,smart teaching platforms have become important tools for higher education teaching reform.As a core course of computer science and technology-related majors in high...With the rapid development of information technology,smart teaching platforms have become important tools for higher education teaching reform.As a core course of computer science and technology-related majors in higher education,the data structure course lays a solid foundation for students’professional learning and plays an important role in promoting their future success in technology,research,and industry.This study conducts an in-depth analysis of the pain points faced by the data structure course,and explores a teaching reform and practice of integration of theory and practice based on the system application of a smart teaching platform before class,during class,and after class.The reform practice shows that this teaching mode improves students’learning initiative,learning motivation,and practical skills.Students not only achieved better results in knowledge mastery but also significantly improved in problem analysis and solution.展开更多
The structural and morphological evolution of mono-domains in thin films has been investigated for a series of liquid crystalline (LC) copolyethers. The copolyethers studied were synthesized by the reaction of 1-(4-hy...The structural and morphological evolution of mono-domains in thin films has been investigated for a series of liquid crystalline (LC) copolyethers. The copolyethers studied were synthesized by the reaction of 1-(4-hydroxy-4 ' -biphenylyl)-2-(4-hydroxyl-phenyl)propane (TPP) with 1,7-dibromoheptane and 1,11-undecane at different compositions (coTPPs-7/11). In contrast to the solution-cast thin films without annealing, which exhibit the isotropic homogeneous molecular orientation, mono-domains with a homeotropic alignment were found in coTPP-7/11(5/5) after the thin films were annealed in the high-temperature columnar phase (Phi '). Similar to the nucleation process in polymer crystallization, transmission electron microscopic observations show that small mono-domains appear in the initial stage of annealing, where molecules form a uniaxial in-plane chain orientation. With increasing annealing time, the molecular orientation gradually became tilted with respect to the substrate surface, and finally, a uniaxial homeotropic molecular orientation was achieved after a prolonged annealing time. The lateral size of mono-domains was found to increase continuously with annealing time and grew into a circular shape, indicating an isotropic lateral growth scheme which implies a hexagonal molecular packing proved by the electron diffraction experiments.展开更多
The comparative experiments of age forming and artificial aging of 2A12 aluminum alloy were carried out. The effect of the age forming on the microstructure and mechanical properties was investigated. The results demo...The comparative experiments of age forming and artificial aging of 2A12 aluminum alloy were carried out. The effect of the age forming on the microstructure and mechanical properties was investigated. The results demonstrate that the grains are further squashed and elongated compared with artificial aging due to the existence of the applied stress during the age forming. Meanwhile, the precipitated phases change from circle shape with random orientation of age forming to long strip shape with uniform orientation of artificial aging. The dislocation configuration in samples changes from ring dislocation or helical dislocation of the artificial aging to long and straight dislocation of the age forming. Otherwise, age forming slightly reduces the tensile properties and fracture toughness of the alloy and enhances its fatigue crack growth rate.展开更多
The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinemen...The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.展开更多
Effects of process parameters on microstructure and mechanical properties of the AM50A magnesium alloy components formed by double control forming (DCF) were investigated via a four-factor and four-level orthogonal ...Effects of process parameters on microstructure and mechanical properties of the AM50A magnesium alloy components formed by double control forming (DCF) were investigated via a four-factor and four-level orthogonal experiment. The variable curves of DCF showed that the forging procedure was started in the following 35 ms after the injection procedure was completed. It was confirmed that the high-speed filling and high-pressure densifying were combined together in the DCF process. Better surface quality and higher mechanical properties were achieved in the components formed by DCF as compared to die casting (DC) due to the refined and uniform microstructure with a few defects or without defects. Injection speed affected more effectively the yield strength (YS), ultimate tensile strength (UTS) and elongation as compared to pouring temperature, die temperature and forging force. But the pouring temperature had a more significant effect on hardness as compared to injection speed, die temperature and forging force. Pouring temperature of 675 &#176;C, injection speed of 2.7 m/s and forging force of 4000 kN except for die temperature were the optimal parameters for obtaining the highest YS, UTS, elongation and Vickers hardness. Die temperatures of 205, 195, 195 and 225 &#176;C were involved in achieving the highest YS, UTS, elongation and Vickers hardness, respectively. Obvious microporosity and microcracks were found on the fracture surface of the components formed by DC, deteriorating the mechanical properties. However, the tensile fracture morphology of the components formed by DCF was characterized by ductile fracture due to a large number of dimples and no defects, which was beneficial for improving the mechanical properties.展开更多
The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture t...The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture toughness tests. The results show that the volume fraction of dynamic recrystallization increased with the decrease of Zener-Hollomon (Z) parameter, and the volume fraction of static recrystallization increased with the increasing of Z parameter. The strength and fracture toughness of the alloy after solution and aging treatment first increased and then decreased with the increase of Z parameter. The microstructure map was established on the basis of microstructure evolution during deformation and solution heat treatment. The optimization deformation conditions were acquired under Z parameters of 1.2×10^10-9.1×10^12.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52425408 and 52304345)the Fundamental Research Funds for the Central Universities,China(No.2023CDJXY-016)the Postdoctoral Science Foundation of Chongqing(No.CSTB2023NSCQ-BHX0174)。
文摘Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
基金supported by the National Key R&D Program of China(No.2022YFE0121300)the Introduction Plan for High end Foreign Experts,China(No.G2023105001L)the Young Foreign Talent Program,China(No.QN2023105001L).
文摘Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.
基金supported by the second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant NO.2019QZKK0904)the National Natural Science Foundation of China(Grant No.41941019)the National Natural Science Foundation of China(Grant NO.42307217)。
文摘The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan Plateau region,leading to a rising risk of landslides.The landslide in Banbar County,Xizang(Tibet),have been perturbed by ongoing disturbances from human engineering activities,making it susceptible to instability and displaying distinct features.In this study,small baseline subset synthetic aperture radar interferometry(SBAS-InSAR)technology is used to obtain the Line of Sight(LOS)deformation velocity field in the study area,and then the slope-orientation deformation field of the landslide is obtained according to the spatial geometric relationship between the satellite’s LOS direction and the landslide.Subsequently,the landslide thickness is inverted by applying the mass conservation criterion.The results show that the movement area of the landslide is about 6.57×10^(4)m^(2),and the landslide volume is about 1.45×10^(6)m^(3).The maximum estimated thickness and average thickness of the landslide are 39 m and 22 m,respectively.The thickness estimation results align with the findings from on-site investigation,indicating the applicability of this method to large-scale earth slides.The deformation rate of the landslide exhibits a notable correlation with temperature variations,with rainfall playing a supportive role in the deformation process and displaying a certain lag.Human activities exert the most substantial influence on the spatial heterogeneity of landslide deformation,leading to the direct impact of several prominent deformation areas due to human interventions.Simultaneously,utilizing the long short-term memory(LSTM)model to predict landslide displacement,and the forecast results demonstrate the effectiveness of the LSTM model in predicting landslides that are in a continuous development and movement phase.The landslide is still active,and based on the spatial heterogeneity of landslide deformation,new recommendations have been proposed for the future management of the landslide in order to mitigate potential hazards associated with landslide instability.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021B15151300042021B1515140021)+2 种基金the Scientific Research Start-up Funding of Guangdong Medical University(1026/4SG21229G)China Postdoctoral Science Foundation(2021M702781)Guangdong Medical University Post-doctoral Research Funding(2BH19006P)。
文摘Ovalbumin(OVA)is the major allergenic protein that can induce T helper 2(Th2)-allergic reactions,for which current treatment options are inadequate.In this study,we developed a polymerized hypoallergenic OVA product via laccase/caffeic acid(Lac/CA)-catalyzed crosslinking in conjunction with galactomannan(Man).The formation of high molecular weight crosslinked polymers and the Ig G-binding were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE)and Western blotting.The study indicated that Lac/CA-catalyzed crosslinking plus Man conjugation substantially altered secondary and tertiary structures of OVA along with the variation in surface hydrophobicity.Gastrointestinal digestion stability assay indicated that crosslinked OVA exhibited less resistance in simulated gastric fluid(SGF)and simulated intestinal fluid(SIF).Mouse model study indicated that Lac-Man/OVA ameliorated eosinophilic airway inflammatory response and efficiently downregulated the expression of Th2-related cytokines(interleukin(IL)-4,IL-5,and IL-13),and upregulated IFN-γand IL-10 expression.Stimulation of bone marrow-derived dendritic cells with Lac-Man/OVA suppressed the expression of phenotypic maturation markers(CD80 and CD86)and MHC class II molecules,and suppressed the expression levels of proinflammatory cytokines.The knowledge obtained in the present study offers an effective way to acquire a hypoallergenic OVA product that can have a therapeutic effect in alleviating OVA-induced allergic asthma.
基金Guangzhou Key R&D Program/Plan Unveiled Flagship Project,Grant/Award Number:20220602JBGS02Guangzhou Basic and Applied Basic Research Project,Grant/Award Number:202201011449+3 种基金Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology,Grant/Award Numbers:FC202220,FC202216Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2021A1515010167,2022A1515011196National Natural Science Foundation of China,Grant/Award Numbers:21975292,21978331,22068008,52101186Training Program of the Major Research Plan of the National Natural Science Foundation of China,Grant/Award Number:92061124。
文摘Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.
基金supported by National Natural Science Foundation of China,China(No.51901117,51801116)Youth Innovation and Technology Support Program of Shandong Provincial Colleges and Universities,China(No.2020KJA002)+2 种基金Youth Fund of Shandong Academy of Sciences,China(2020QN0021)Innovation Pilot Project for Fusion of Science,Education and Industry(International Cooperation)from Qilu University of Technology(Shandong Academy of Sciences),China(No.2020KJC-GH03)Several Policies on Promoting Collaborative Innovation and Industrialization of Achievements in Universities and Research Institutes,China(No.2019GXRC030)。
文摘In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular dynamics simulation.In liquid Mg-rich Mg-Y alloys,the strong Mg-Y interaction is determined,which promotes the formation of fivefold symmetric local structure.For Mg-Zn alloys,the weak Mg-Zn interaction results in the fivefold symmetry weakening in the liquid structure.Due to the coexistence of Y and Zn,the strong attractive interaction is introduced in liquid Mg-Y-Zn ternary alloy,and contributes to the clustering of Mg,Y,Zn launched from Zn.What is more,the distribution of local structures becomes closer to that in pure Mg compared with that in binary Mg-Y and Mg-Zn alloys.These results should relate to the origins of the Y/Zn segregation zone and close-packed stacking mode in LPSO structure,which provides a new insight into the formation mechanism of LPSO structure at atomic level.
基金the support from the National Natural Science Foundation of China(No.52271177)the Science and Technology Innovation Leaders Projects in Hunan Province,China(No.2021RC4036).
文摘The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korean Government(NRF-2021R1A4A1030318,NRF-2022R1C1C1011386,NRF-2020M3H4A1A03084258)supported by the"Regional Innovation Strategy(RIS)"through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-003)
文摘The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.
文摘Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84)anionic metal-organic frameworks(MOFs),where NJTU-Bai83=(Me_(2)NH_(2))2[Zn_(3)(trz)_(2)(ox)_(3)]·2H_(2)O and NJTU-Bai84=(Me_(2)NH_(2))[Zn_(3)(trz)_(3)(ox)_(2)]·H_(2)O,respectively.With the[Zn_(2)(ox)4(trz)_(2)]secondary building unit(SBU)in NJTU-Bai83 replaced by the[Zn_(3)(ox)_(2)(trz)_(6)]and planar[Zn(ox)_(2)(trz)_(2)]ones in NJTU-Bai84,2D supramolecular building layers(SBLs)are changed from the A-layer and B-layer to another A-layer,while pillars are transformed from the tetrahedral[Zn(ox)_(2)(trz)_(2)]SBU to the irregular tetrahedral[Zn(ox)_(2)(trz)_(2)]and planar[Zn(ox)_(2)(trz)_(2)]SBUs.Thus,cdq-topological quaternary NJTU-Bai83 is tuned to(4,4,8)-c new topological quinary NJTU-Bai84.Two MOFs were well characterized by powder X-ray diffraction,thermogravimetric analysis,elemental analysis,etc.CCDC:2351819,NJTU-Bai83;2351820,NJTU-Bai84.
基金Funded by the Science&Technology Project of the Department of Transport of Tibet Autonomous Region(No.XZJTKJ2020[04])。
文摘We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogravimetry and nitrogen absorption porosimetry on cement past,mercury intrusion porosimetry on mortar,and microhardness test on interface transition zone between mortar and coarse aggregate were conducted to evaluate the hydration degree and characterize the micro-structure.Whilst,tests for the rebound strength,abrasion resistance,and chloride ion impenetrability of concrete were conducted to assess the macro-performance.The experimental results show that,affected by the harsh plateau climate,outward surfaces have lower hydration degrees and worse pore structure than inward surfaces.As the hydration of concrete surface is ongoing after the age of 180 days,both the micro-structure and the macro-performance are continuously improved.In the long-term,either the orientation or the depth towards surface does not significantly affect concrete performance.Surface carbonation brings positive effects on mechanical properties but negative effects on the durability.Additionally,standard test result of chloride ion impenetrability is found significantly affected by the atmospheric pressure.For a same batch of concrete,charge passed in plateau regions is obviously lower than that in common regions.
基金supported by the National Nat-ural Science Foundation of China(Grant Nos.51775194 and 52090043).
文摘Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.However,due to the thermo-mechanical coupling effect and the existence of stiffened structure,complex microstructure evolution and uneven microstructure occur easily at the cylindrical wall(CW)and inner rib(IR)of Mg alloy thin-walled CPLIRs during the HFF.In this paper,a modified cellular automaton(CA)model of Mg alloy considering the effects of deformation conditions on material parameters was developed using the artificial neural network(ANN)method.It is found that the ANN-modified CA model exhibits better predictability for the microstructure of hot deformation than the conventional CA model.Furthermore,the microstructure evolution of ZK61 alloy CPLIRs during the HFF was analyzed by coupling the modified CA model and finite element analysis(FEA).The results show that compared with the microstructure at the same layer of the IR,more refined grains and less sufficient DRX resulted from larger strain and strain rate occur at that of the CW;various differences of strain and strain rate in the wall-thickness exist between the CW and IR,which leads to the inhomogeneity of microstructure rising firstly and declining from the inside layer to outside layer;the obtained Hall-Petch relationship between the measured microhardness and predicted grain sizes at the CW and the IR indicates the reliability of the coupled FEA-CA simulation results.
基金supported by the National Natural Science Foundation of China(No.52079133)CRSRI Open Research Program(Program SN:CKWV2019746/KY)+1 种基金the project of Key Laboratory of Water Grid Project and Regulation of Ministry of Water Resources(QTKS0034W23291)the Youth Innovation Promotion Association CAS.
文摘Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.
文摘In the traditional process, m-phenylenediamine reacts with fuming sulfuric acid at high temperature to get intermediates, and then after dehydration occurs intramolecular rearrangement to get 2,4-diaminobenzenesulfonic acid. Traditional methods need to consume a lot of fuming sulfuric acid or concentrated sulfuric acid, resulting in high industrial large-scale production cost, more waste, and posing a serious environmental pollution risk. In this thesis, three different sulfonation reagents were used for the sulfonation reaction of m-phenylenediamine, and the reaction mechanisms and crystal structures of the three pathways were investigated. The three routes are: 1) one-step synthesis of monosulfonated compound 1 from raw material and sulfur trioxide (SO<sub>3</sub>);2) rapid reaction of raw material and chlorosulfonic acid to synthesize bisulfonated compound 2;3) direct eutectic crystallization of raw material and ordinary sulfuric acid to obtain compound 3. The crystal structure of the compounds synthesized by three paths was analyzed by X-ray single crystal diffraction, and compound 1 was characterized by NMR, Fourier infrared spectra, UV-visible spectrum and Mass spectrometry. The one-step synthesis of SO<sub>3</sub> as a sulfonation reagent has the advantages of mild reaction conditions, simple operation and low cost.
文摘With the rapid development of information technology,smart teaching platforms have become important tools for higher education teaching reform.As a core course of computer science and technology-related majors in higher education,the data structure course lays a solid foundation for students’professional learning and plays an important role in promoting their future success in technology,research,and industry.This study conducts an in-depth analysis of the pain points faced by the data structure course,and explores a teaching reform and practice of integration of theory and practice based on the system application of a smart teaching platform before class,during class,and after class.The reform practice shows that this teaching mode improves students’learning initiative,learning motivation,and practical skills.Students not only achieved better results in knowledge mastery but also significantly improved in problem analysis and solution.
基金This work was supported by the National Natural Science Foundation of China (No. 29425005).
文摘The structural and morphological evolution of mono-domains in thin films has been investigated for a series of liquid crystalline (LC) copolyethers. The copolyethers studied were synthesized by the reaction of 1-(4-hydroxy-4 ' -biphenylyl)-2-(4-hydroxyl-phenyl)propane (TPP) with 1,7-dibromoheptane and 1,11-undecane at different compositions (coTPPs-7/11). In contrast to the solution-cast thin films without annealing, which exhibit the isotropic homogeneous molecular orientation, mono-domains with a homeotropic alignment were found in coTPP-7/11(5/5) after the thin films were annealed in the high-temperature columnar phase (Phi '). Similar to the nucleation process in polymer crystallization, transmission electron microscopic observations show that small mono-domains appear in the initial stage of annealing, where molecules form a uniaxial in-plane chain orientation. With increasing annealing time, the molecular orientation gradually became tilted with respect to the substrate surface, and finally, a uniaxial homeotropic molecular orientation was achieved after a prolonged annealing time. The lateral size of mono-domains was found to increase continuously with annealing time and grew into a circular shape, indicating an isotropic lateral growth scheme which implies a hexagonal molecular packing proved by the electron diffraction experiments.
基金Project (NCET-10-0278) supported by the Program for New Century Excellent Talents in University, ChinaProject (20102024) supported by the Natural Science Foundation of Liaoning Province, China
文摘The comparative experiments of age forming and artificial aging of 2A12 aluminum alloy were carried out. The effect of the age forming on the microstructure and mechanical properties was investigated. The results demonstrate that the grains are further squashed and elongated compared with artificial aging due to the existence of the applied stress during the age forming. Meanwhile, the precipitated phases change from circle shape with random orientation of age forming to long strip shape with uniform orientation of artificial aging. The dislocation configuration in samples changes from ring dislocation or helical dislocation of the artificial aging to long and straight dislocation of the age forming. Otherwise, age forming slightly reduces the tensile properties and fracture toughness of the alloy and enhances its fatigue crack growth rate.
基金Projects(51204053,51074048,51204048)supported by the National Natural Science Foundation of ChinaProject(20110491518)supported by China Postdoctoral Science FoundationProject(2012CB619506)supported by the National Basic Research Program of China
文摘The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.
基金Project(51075099)supported by the National Natural Science Foundation of ChinaProject(E201038)supported by the Natural Science Foundation of Heilongjiang Province,China+2 种基金Project(HIT.NSRIF.2013007)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2011RFQXG010)supported by the Harbin City Young Scientists Foundation,ChinaProject(LBH-T1102)supported by Specially Postdoctoral Science Foundation of Heilongjiang Province,China
文摘Effects of process parameters on microstructure and mechanical properties of the AM50A magnesium alloy components formed by double control forming (DCF) were investigated via a four-factor and four-level orthogonal experiment. The variable curves of DCF showed that the forging procedure was started in the following 35 ms after the injection procedure was completed. It was confirmed that the high-speed filling and high-pressure densifying were combined together in the DCF process. Better surface quality and higher mechanical properties were achieved in the components formed by DCF as compared to die casting (DC) due to the refined and uniform microstructure with a few defects or without defects. Injection speed affected more effectively the yield strength (YS), ultimate tensile strength (UTS) and elongation as compared to pouring temperature, die temperature and forging force. But the pouring temperature had a more significant effect on hardness as compared to injection speed, die temperature and forging force. Pouring temperature of 675 &#176;C, injection speed of 2.7 m/s and forging force of 4000 kN except for die temperature were the optimal parameters for obtaining the highest YS, UTS, elongation and Vickers hardness. Die temperatures of 205, 195, 195 and 225 &#176;C were involved in achieving the highest YS, UTS, elongation and Vickers hardness, respectively. Obvious microporosity and microcracks were found on the fracture surface of the components formed by DC, deteriorating the mechanical properties. However, the tensile fracture morphology of the components formed by DCF was characterized by ductile fracture due to a large number of dimples and no defects, which was beneficial for improving the mechanical properties.
基金Projects (2010CB731701, 2012CB619502) supported by National Basic Research Program of ChinaProject (51021063) supported by Creative Research Group of National Natural Science Foundation of ChinaProject (CX2012B043) supported by Hunan Provincial Innovation Foundation for Postgraduate
文摘The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture toughness tests. The results show that the volume fraction of dynamic recrystallization increased with the decrease of Zener-Hollomon (Z) parameter, and the volume fraction of static recrystallization increased with the increasing of Z parameter. The strength and fracture toughness of the alloy after solution and aging treatment first increased and then decreased with the increase of Z parameter. The microstructure map was established on the basis of microstructure evolution during deformation and solution heat treatment. The optimization deformation conditions were acquired under Z parameters of 1.2×10^10-9.1×10^12.