期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
NEW HYBRID AI-SVM ALGORITHM: COMBINATION OF SUPPORT VECTOR MACHINES AND ARTIFICIAL IMMUNE NETWORKS
1
作者 张焕萍 王惠南 宋晓峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期272-277,共6页
Support vector machines (SVMs) are combined with the artificial immune network (aiNet), thus forming a new hybrid ai-SVM algorithm. The algorithm is used to reduce the number of samples and the training time of SV... Support vector machines (SVMs) are combined with the artificial immune network (aiNet), thus forming a new hybrid ai-SVM algorithm. The algorithm is used to reduce the number of samples and the training time of SVM on large datasets, aiNet is an artificial immune system (AIS) inspired method to perform the automatic data compression, extract the relevant information and retain the topology of the original sample distribution. The output of aiNet is a set of antibodies for representing the input dataset in a simplified way. Then the SVM model is built in the compressed antibody network instead of the original input data. Experimental results show that the ai-SVM algorithm is effective to reduce the computing time and simplify the SVM model, and the accuracy is not decreased. 展开更多
关键词 support vector machine artificial immune network sample reduction
下载PDF
A Kernel Clustering Algorithm for Fast Training of Support Vector Machines
2
作者 刘笑嶂 冯国灿 《Journal of Donghua University(English Edition)》 EI CAS 2011年第1期53-56,共4页
A new algorithm named kernel bisecting k-means and sample removal(KBK-SR) is proposed as sampling preprocessing for support vector machine(SVM) training to improve the efficiency.The proposed algorithm tends to quickl... A new algorithm named kernel bisecting k-means and sample removal(KBK-SR) is proposed as sampling preprocessing for support vector machine(SVM) training to improve the efficiency.The proposed algorithm tends to quickly produce balanced clusters of similar sizes in the kernel feature space,which makes it efficient and effective for reducing training samples.Theoretical analysis and experimental results on three UCI real data benchmarks both show that,with very short sampling time,the proposed algorithm dramatically accelerates SVM sampling and training while maintaining high test accuracy. 展开更多
关键词 support vector machines(SVMs) sample reduction topdown hierarchical clustering kernel bisecting k-means
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部