In the evaluation of some simulation systems, only small samples data are gotten due to the limited conditions. In allusion to the evaluation problem of small sample data, an interval estimation approach with the impr...In the evaluation of some simulation systems, only small samples data are gotten due to the limited conditions. In allusion to the evaluation problem of small sample data, an interval estimation approach with the improved grey confidence degree is proposed.On the basis of the definition of grey distance, three kinds of definition of the grey weight for every sample element in grey estimated value are put forward, and then the improved grey confidence degree is designed. In accordance with the new concept, the grey interval estimation for small sample data is deduced. Furthermore,the bootstrap method is applied for more accurate grey confidence interval. Through resampling of the bootstrap, numerous small samples with the corresponding confidence intervals can be obtained. Then the final confidence interval is calculated from the union of these grey confidence intervals. In the end, the simulation system evaluation using the proposed method is conducted. The simulation results show that the reasonable confidence interval is acquired, which demonstrates the feasibility and effectiveness of the proposed method.展开更多
An efficient importance sampling algorithm is presented to analyze reliability of complex structural system with multiple failure modes and fuzzy-random uncertainties in basic variables and failure modes. In order to ...An efficient importance sampling algorithm is presented to analyze reliability of complex structural system with multiple failure modes and fuzzy-random uncertainties in basic variables and failure modes. In order to improve the sampling efficiency, the simulated annealing algorithm is adopted to optimize the density center of the importance sampling for each failure mode, and results that the more significant contribution the points make to fuzzy failure probability, the higher occurrence possibility the points are sampled. For the system with multiple fuzzy failure modes, a weighted and mixed importance sampling function is constructed. The contribution of each fuzzy failure mode to the system failure probability is represented by the appropriate factors, and the efficiency of sampling is improved furthermore. The variances and the coefficients of variation are derived for the failure probability estimations. Two examples are introduced to illustrate the rationality of the present method. Comparing with the direct Monte-Carlo method, the improved efficiency and the precision of the method are verified by the examples.展开更多
Fishery-independent surveys are often used for collecting high quality biological and ecological data to support fisheries management. A careful optimization of fishery-independent survey design is necessary to improv...Fishery-independent surveys are often used for collecting high quality biological and ecological data to support fisheries management. A careful optimization of fishery-independent survey design is necessary to improve the precision of survey estimates with cost-effective sampling efforts. We developed a simulation approach to evaluate and optimize the stratification scheme for a fishery-independent survey with multiple goals including estimation of abundance indices of individual species and species diversity indices. We compared the performances of the sampling designs with different stratification schemes for different goals over different months. Gains in precision of survey estimates from the stratification schemes were acquired compared to simple random sampling design for most indices. The stratification scheme with five strata performed the best. This study showed that the loss of precision of survey estimates due to the reduction of sampling efforts could be compensated by improved stratification schemes, which would reduce the cost and negative impacts of survey trawling on those species with low abundance in the fishery-independent survey. This study also suggests that optimization of a survey design differed with different survey objectives. A post-survey analysis can improve the stratification scheme of fishery-independent survey designs.展开更多
Simulation based structural reliability analysis suffers from a heavy computational burden, as each sample needs to be evaluated on the performance function, where structural analysis is performed. To alleviate the co...Simulation based structural reliability analysis suffers from a heavy computational burden, as each sample needs to be evaluated on the performance function, where structural analysis is performed. To alleviate the computational burden, related research focuses mainly on reduction of samples and application of surrogate model, which substitutes the performance function. However,the reduction of samples is achieved commonly at the expense of loss of robustness, and the construction of surrogate model is computationally expensive. In view of this, this paper presents a robust and efficient method in the same direction. The present method uses radial-based importance sampling (RBIS) to reduce samples without loss of robustness. Importantly, Kriging is fully used to efficiently implement RBIS. It not only serves as a surrogate to classify samples as we all know, but also guides the procedure to determine the optimal radius, with which RBIS would reduce samples to the highest degree. When used as a surrogate, Kriging is established through active learning, where the previously evaluated points to determine the optimal radius are reused. The robustness and efficiency of the present method are validated by five representative examples, where the present method is compared mainly with two fundamental reliability methods based on active learning Kriging.展开更多
Computer simulation was carried out on fiber length and width for plantation-grown Chinesewhite poplar (Populus tomentosa Carr. clone) and plantation-grown poplar I-72 (P. x eurumericana (Dode)Guiner cv.). Skewness an...Computer simulation was carried out on fiber length and width for plantation-grown Chinesewhite poplar (Populus tomentosa Carr. clone) and plantation-grown poplar I-72 (P. x eurumericana (Dode)Guiner cv.). Skewness and kurtosis of measured results exhibited that distributions of the fiber length andwidth departured from normal distribution. Three-parameter Weibull density function was used in thisinvestigation and the corresponding program was written with Turbo C. The results showed that profiles ofsimulated length and width histograms were similar to ones of measured histograms, and that there was apretty good agreement between simulated and measured means of fiber length and width. There was a littleinfluence on the simulated means from seed used in random number generator and number of simulatedvariables. That indicated that the simulation was steady when the seed and the number were altered. Differenthistograms can be obtained with different values of the location, the shape, and the scale parameter correspondingto different values of the minimum, the mean, and the standard deviation for fiber length and width. Thesimulation presented here can be used as a tool for the studies on the variations in fiber morphology.展开更多
Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach fo...Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach for virtual testability demonstration test based on stochastic process theory is proposed.First,the similarities and differences of fault sample generation between physical testability demonstration test and virtual testability demonstration test are discussed.Second,it is pointed out that the fault occurrence process subject to perfect repair is renewal process.Third,the interarrival time distribution function of the next fault event is given.Steps and flowcharts of fault sample generation are introduced.The number of faults and their occurrence time are obtained by statistical simulation.Finally,experiments are carried out on a stable tracking platform.Because a variety of types of life distributions and maintenance modes are considered and some assumptions are removed,the sample size and structure of fault sample simulation results are more similar to the actual results and more reasonable.The proposed method can effectively guide the fault injection in virtual testability demonstration test.展开更多
Urban electricity and heat networks(UEHN)consist of the coupling and interactions between electric power systems and district heating systems,in which the geographical and functional features of integrated energy syst...Urban electricity and heat networks(UEHN)consist of the coupling and interactions between electric power systems and district heating systems,in which the geographical and functional features of integrated energy systems are demonstrated.UEHN have been expected to provide an effective way to accommodate the intermittent and unpredictable renewable energy sources,in which the application of stochastic optimization approaches to UEHN analysis is highly desired.In this paper,we propose a chance-constrained coordinated optimization approach for UEHN considering the uncertainties in electricity loads,heat loads,and photovoltaic outputs,as well as the correlations between these uncertain sources.A solution strategy,which combines the Latin Hypercube Sampling Monte Carlo Simulation(LHSMCS)approach and a heuristic algorithm,is specifically designed to deal with the proposed chance-constrained coordinated optimization.Finally,test results on an UEHN comprised of a modified IEEE 33-bus system and a 32-node district heating system at Barry Island have verified the feasibility and effectiveness of the proposed framework.展开更多
文摘In the evaluation of some simulation systems, only small samples data are gotten due to the limited conditions. In allusion to the evaluation problem of small sample data, an interval estimation approach with the improved grey confidence degree is proposed.On the basis of the definition of grey distance, three kinds of definition of the grey weight for every sample element in grey estimated value are put forward, and then the improved grey confidence degree is designed. In accordance with the new concept, the grey interval estimation for small sample data is deduced. Furthermore,the bootstrap method is applied for more accurate grey confidence interval. Through resampling of the bootstrap, numerous small samples with the corresponding confidence intervals can be obtained. Then the final confidence interval is calculated from the union of these grey confidence intervals. In the end, the simulation system evaluation using the proposed method is conducted. The simulation results show that the reasonable confidence interval is acquired, which demonstrates the feasibility and effectiveness of the proposed method.
基金This project is supported by National Natural Science Foundation of China (No.10572117)Aerospace Science Foundation of China(No.N3CH0502,No.N5CH0001)Provincial Natural Science Foundation of Shanxi, China(No.N3CS0501).
文摘An efficient importance sampling algorithm is presented to analyze reliability of complex structural system with multiple failure modes and fuzzy-random uncertainties in basic variables and failure modes. In order to improve the sampling efficiency, the simulated annealing algorithm is adopted to optimize the density center of the importance sampling for each failure mode, and results that the more significant contribution the points make to fuzzy failure probability, the higher occurrence possibility the points are sampled. For the system with multiple fuzzy failure modes, a weighted and mixed importance sampling function is constructed. The contribution of each fuzzy failure mode to the system failure probability is represented by the appropriate factors, and the efficiency of sampling is improved furthermore. The variances and the coefficients of variation are derived for the failure probability estimations. Two examples are introduced to illustrate the rationality of the present method. Comparing with the direct Monte-Carlo method, the improved efficiency and the precision of the method are verified by the examples.
基金The Public Science and Technology Research Funds Projects of Ocean under contract No.201305030the Specialized Research Fund for the Doctoral Program of Higher Education under contract No.20120132130001
文摘Fishery-independent surveys are often used for collecting high quality biological and ecological data to support fisheries management. A careful optimization of fishery-independent survey design is necessary to improve the precision of survey estimates with cost-effective sampling efforts. We developed a simulation approach to evaluate and optimize the stratification scheme for a fishery-independent survey with multiple goals including estimation of abundance indices of individual species and species diversity indices. We compared the performances of the sampling designs with different stratification schemes for different goals over different months. Gains in precision of survey estimates from the stratification schemes were acquired compared to simple random sampling design for most indices. The stratification scheme with five strata performed the best. This study showed that the loss of precision of survey estimates due to the reduction of sampling efforts could be compensated by improved stratification schemes, which would reduce the cost and negative impacts of survey trawling on those species with low abundance in the fishery-independent survey. This study also suggests that optimization of a survey design differed with different survey objectives. A post-survey analysis can improve the stratification scheme of fishery-independent survey designs.
基金supported by the National Natural Science Foundation of China (Grant No. 11421091)the Fundamental Research Funds for the Central Universities (Grant No. HIT.MKSTISP.2016 09)
文摘Simulation based structural reliability analysis suffers from a heavy computational burden, as each sample needs to be evaluated on the performance function, where structural analysis is performed. To alleviate the computational burden, related research focuses mainly on reduction of samples and application of surrogate model, which substitutes the performance function. However,the reduction of samples is achieved commonly at the expense of loss of robustness, and the construction of surrogate model is computationally expensive. In view of this, this paper presents a robust and efficient method in the same direction. The present method uses radial-based importance sampling (RBIS) to reduce samples without loss of robustness. Importantly, Kriging is fully used to efficiently implement RBIS. It not only serves as a surrogate to classify samples as we all know, but also guides the procedure to determine the optimal radius, with which RBIS would reduce samples to the highest degree. When used as a surrogate, Kriging is established through active learning, where the previously evaluated points to determine the optimal radius are reused. The robustness and efficiency of the present method are validated by five representative examples, where the present method is compared mainly with two fundamental reliability methods based on active learning Kriging.
文摘Computer simulation was carried out on fiber length and width for plantation-grown Chinesewhite poplar (Populus tomentosa Carr. clone) and plantation-grown poplar I-72 (P. x eurumericana (Dode)Guiner cv.). Skewness and kurtosis of measured results exhibited that distributions of the fiber length andwidth departured from normal distribution. Three-parameter Weibull density function was used in thisinvestigation and the corresponding program was written with Turbo C. The results showed that profiles ofsimulated length and width histograms were similar to ones of measured histograms, and that there was apretty good agreement between simulated and measured means of fiber length and width. There was a littleinfluence on the simulated means from seed used in random number generator and number of simulatedvariables. That indicated that the simulation was steady when the seed and the number were altered. Differenthistograms can be obtained with different values of the location, the shape, and the scale parameter correspondingto different values of the minimum, the mean, and the standard deviation for fiber length and width. Thesimulation presented here can be used as a tool for the studies on the variations in fiber morphology.
基金National Natural Science Foundation of China(51105369)
文摘Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach for virtual testability demonstration test based on stochastic process theory is proposed.First,the similarities and differences of fault sample generation between physical testability demonstration test and virtual testability demonstration test are discussed.Second,it is pointed out that the fault occurrence process subject to perfect repair is renewal process.Third,the interarrival time distribution function of the next fault event is given.Steps and flowcharts of fault sample generation are introduced.The number of faults and their occurrence time are obtained by statistical simulation.Finally,experiments are carried out on a stable tracking platform.Because a variety of types of life distributions and maintenance modes are considered and some assumptions are removed,the sample size and structure of fault sample simulation results are more similar to the actual results and more reasonable.The proposed method can effectively guide the fault injection in virtual testability demonstration test.
基金This work was supported in part by Natural Science Foundation of Jiangsu Province,China(No.BK20171433)in part by Science and Technology Project of State Grid Jiangsu Electric Power Corporation,China(No.J2018066).
文摘Urban electricity and heat networks(UEHN)consist of the coupling and interactions between electric power systems and district heating systems,in which the geographical and functional features of integrated energy systems are demonstrated.UEHN have been expected to provide an effective way to accommodate the intermittent and unpredictable renewable energy sources,in which the application of stochastic optimization approaches to UEHN analysis is highly desired.In this paper,we propose a chance-constrained coordinated optimization approach for UEHN considering the uncertainties in electricity loads,heat loads,and photovoltaic outputs,as well as the correlations between these uncertain sources.A solution strategy,which combines the Latin Hypercube Sampling Monte Carlo Simulation(LHSMCS)approach and a heuristic algorithm,is specifically designed to deal with the proposed chance-constrained coordinated optimization.Finally,test results on an UEHN comprised of a modified IEEE 33-bus system and a 32-node district heating system at Barry Island have verified the feasibility and effectiveness of the proposed framework.