期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Distribution and Migration of Heavy Metals in Undisturbed Forest Soils:A High Resolution Sampling Method 被引量:13
1
作者 RUAN Xin-Ling ZHANG Gan-Lin +1 位作者 NI Liu-Jian HE Yue 《Pedosphere》 SCIE CAS CSCD 2008年第3期386-393,共8页
The vertical distribution and migration of Cu,Zn,Pb,and Cd in two forest soil profiles near an industrial emission source were investigated using a high resolution sampling method together with reference element Ti.On... The vertical distribution and migration of Cu,Zn,Pb,and Cd in two forest soil profiles near an industrial emission source were investigated using a high resolution sampling method together with reference element Ti.One-meter soil profile was sectioned horizontally at 2 cm intervals in the first 40 cm,5 cm intervals in the next 40 cm,and 10 cm intervals in the last 20 cm.The migration distance and rate of heavy metals in the soil profiles were calculated according to their relative concentrations in the profiles,as calibrated by the reference element Ti.The enrichment of heavy metals appeared in the uppermost layer of the forest soil,and the soil heavy metal concentrations decreased down the profile until reaching their background values.The calculated average migration rates of Cd,Cu,Pb,and Zn were 0.70,0.33,0.37,and 0.76 cm year-1,respectively,which were comparable to other methods.A simulation model was proposed,which could well describe the distribution of Cu,Zn,Pb,and Cd in natural forest soils. 展开更多
关键词 DISTRIBUTION heavy metals high resolution sampling method migration rate
下载PDF
Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples 被引量:5
2
作者 WEI YAN YANLONG YANG +4 位作者 YU TAN XUN CHEN YANG LI JUNLE QU TONG YE 《Photonics Research》 SCIE EI 2017年第3期176-181,共6页
Stimulated emission depletion(STED) microscopy is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the ... Stimulated emission depletion(STED) microscopy is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of a specimen's optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the severe distortion of the depletion beam profile may cause complete loss of the superresolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is difficult to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique. The full correction can effectively maintain and improve spatial resolution in imaging thick samples. 展开更多
关键词 STED is Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples of in
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部