A stable surface to move manpower and equipment is a key for the construction operations. To create a stable road surface, the road construction techniques are time-consuming and expensive for a traditional constructi...A stable surface to move manpower and equipment is a key for the construction operations. To create a stable road surface, the road construction techniques are time-consuming and expensive for a traditional construction which requires compaction of soil, aggregate base, sub-base and asphaltic layers. A Geosynthetic Access Mat (GAM) system can serve as an alternative to other traditional construction techniques to accommodate temporary construction. Due to its rigidity, the mat system can provide substantial vertical resistance to the applied load under a large deflection subject to soil conditions. This paper provides details of GAM specifications, soil conditions, applications, installation procedure, comparison with other soil stabilization methods and Aramco experience for deployments of these mats.展开更多
Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the conf...Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the configuration space.However,the quality of the initial solution is not guaranteed,and the convergence speed to the optimal solution is slow.In this paper,we present a novel image-based path planning algorithm to overcome these limitations.Specifically,a generative adversarial network(GAN)is designed to take the environment map(denoted as RGB image)as the input without other preprocessing works.The output is also an RGB image where the promising region(where a feasible path probably exists)is segmented.This promising region is utilized as a heuristic to achieve non-uniform sampling for the path planner.We conduct a number of simulation experiments to validate the effectiveness of the proposed method,and the results demonstrate that our method performs much better in terms of the quality of the initial solution and the convergence speed to the optimal solution.Furthermore,apart from the environments similar to the training set,our method also works well on the environments which are very different from the training set.展开更多
A new matting algorithm based on color distance and differential distance is proposed to deal with the problem that many matting methods perform poorly with complex natural images.The proposed method combines local sa...A new matting algorithm based on color distance and differential distance is proposed to deal with the problem that many matting methods perform poorly with complex natural images.The proposed method combines local sampling with global sampling to select foreground and background pairs for unknown pixels and then a new cost function is constructed based on color distance and differential distance to further optimize the selected sample pairs.Finally,a quadratic objective function is used based on matte Laplacian coming from KNN matting which is added with texture feature.Through experiments on various test images,it is confirmed that the results obtained by the proposed method are more accurate than those obtained by traditional methods.The four-error-metrics comparison on benchmark dataset among several algorithms also proves the effectiveness of the proposed method.展开更多
To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompat...To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompatibility. Herein, we reported a polypyrrole-coated zein/epoxy(PPy/ZE) ultrafine fiber mat which was inherently biodegradable and skin-friendly. In addition, it could maintain its ultrafine fibrous structure after coating, which could provide the mat with mechanical compliance, high porosity, and a large specific area for high EMI shielding. With the assistance of the epoxide cross-linking, the breaking stresses of the PPy/ZE fiber mats could achieve 3.3 MPa and 1.4 MPa and the strains were 40.1% and 83.0% in dry and wet states, respectively, which met the needs of various wearable electronic devices. Along with the extension in the PPy treatment duration, more PPy was loaded on the fiber surfaces, which formed more integrated and conductive paths to generate increasing conductivities up to 401.76 S·m^(-1). Moreover, the EMI shielding performance was raised to 26.84 dB. The biobased mats provide a green and efficient choice for EMI shielding materials, which may be a promising strategy to address EMI problems in multiple fields.展开更多
Bayesian Matting has four limitations.Firstly,Bayesian matting makes strong assumption that the texture distribution of nature image satisfies Gaussian distribution with fixed variance.This assumption will fail for co...Bayesian Matting has four limitations.Firstly,Bayesian matting makes strong assumption that the texture distribution of nature image satisfies Gaussian distribution with fixed variance.This assumption will fail for complex texture distribution.In order to extract the nature images with complex texture distribution,we design an information entropy approach to estimate the scalable variance.Secondly,when the opacity is near the boundary of the value range,Bayesian matting method may be failure because of the error computation of opacity.Therefore,a rectification approach is proposed to adjust the computation model and keep the opacity within the valid value range.Thirdly,Bayesian matting is a local sample method which may miss some valid samples of matting.We propose a selection function to integrate valid global sample matting result into above matting framework as a supplement to the local sample matting result.The proposed function is compose of three criteria,that is,the similarity of results,the overlapping degree of samples,and the similarity of neighborhood.Fourthly,in order to obtain a smooth and vivid matte,the result is further refined by considering correlation between neighbouring pixels.Finally,We use online benchmark for image matting to evaluate the proposed method with both qualitative observation and quantitative analysis.The experiments show that our method achieves a competitive advantages over other methods.展开更多
文摘A stable surface to move manpower and equipment is a key for the construction operations. To create a stable road surface, the road construction techniques are time-consuming and expensive for a traditional construction which requires compaction of soil, aggregate base, sub-base and asphaltic layers. A Geosynthetic Access Mat (GAM) system can serve as an alternative to other traditional construction techniques to accommodate temporary construction. Due to its rigidity, the mat system can provide substantial vertical resistance to the applied load under a large deflection subject to soil conditions. This paper provides details of GAM specifications, soil conditions, applications, installation procedure, comparison with other soil stabilization methods and Aramco experience for deployments of these mats.
基金This work was partially supported by National Key R&D Program of China(2019YFB1312400)Shenzhen Key Laboratory of Robotics Perception and Intelligence(ZDSYS20200810171800001)+1 种基金Hong Kong RGC GRF(14200618)Hong Kong RGC CRF(C4063-18G).
文摘Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the configuration space.However,the quality of the initial solution is not guaranteed,and the convergence speed to the optimal solution is slow.In this paper,we present a novel image-based path planning algorithm to overcome these limitations.Specifically,a generative adversarial network(GAN)is designed to take the environment map(denoted as RGB image)as the input without other preprocessing works.The output is also an RGB image where the promising region(where a feasible path probably exists)is segmented.This promising region is utilized as a heuristic to achieve non-uniform sampling for the path planner.We conduct a number of simulation experiments to validate the effectiveness of the proposed method,and the results demonstrate that our method performs much better in terms of the quality of the initial solution and the convergence speed to the optimal solution.Furthermore,apart from the environments similar to the training set,our method also works well on the environments which are very different from the training set.
基金Supported by the National Natural Science Foundation of China(No.61133009,U1304616)
文摘A new matting algorithm based on color distance and differential distance is proposed to deal with the problem that many matting methods perform poorly with complex natural images.The proposed method combines local sampling with global sampling to select foreground and background pairs for unknown pixels and then a new cost function is constructed based on color distance and differential distance to further optimize the selected sample pairs.Finally,a quadratic objective function is used based on matte Laplacian coming from KNN matting which is added with texture feature.Through experiments on various test images,it is confirmed that the results obtained by the proposed method are more accurate than those obtained by traditional methods.The four-error-metrics comparison on benchmark dataset among several algorithms also proves the effectiveness of the proposed method.
基金Fundamental Research Funds for the Central Universities,China(No. 2232022D-13)Fundamental Research Funds of Shanghai Collaborative Innovation Center of High Performance Fibers and Composites (Province-M inistry Joint),China(No. X12812101/015)。
文摘To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompatibility. Herein, we reported a polypyrrole-coated zein/epoxy(PPy/ZE) ultrafine fiber mat which was inherently biodegradable and skin-friendly. In addition, it could maintain its ultrafine fibrous structure after coating, which could provide the mat with mechanical compliance, high porosity, and a large specific area for high EMI shielding. With the assistance of the epoxide cross-linking, the breaking stresses of the PPy/ZE fiber mats could achieve 3.3 MPa and 1.4 MPa and the strains were 40.1% and 83.0% in dry and wet states, respectively, which met the needs of various wearable electronic devices. Along with the extension in the PPy treatment duration, more PPy was loaded on the fiber surfaces, which formed more integrated and conductive paths to generate increasing conductivities up to 401.76 S·m^(-1). Moreover, the EMI shielding performance was raised to 26.84 dB. The biobased mats provide a green and efficient choice for EMI shielding materials, which may be a promising strategy to address EMI problems in multiple fields.
文摘Bayesian Matting has four limitations.Firstly,Bayesian matting makes strong assumption that the texture distribution of nature image satisfies Gaussian distribution with fixed variance.This assumption will fail for complex texture distribution.In order to extract the nature images with complex texture distribution,we design an information entropy approach to estimate the scalable variance.Secondly,when the opacity is near the boundary of the value range,Bayesian matting method may be failure because of the error computation of opacity.Therefore,a rectification approach is proposed to adjust the computation model and keep the opacity within the valid value range.Thirdly,Bayesian matting is a local sample method which may miss some valid samples of matting.We propose a selection function to integrate valid global sample matting result into above matting framework as a supplement to the local sample matting result.The proposed function is compose of three criteria,that is,the similarity of results,the overlapping degree of samples,and the similarity of neighborhood.Fourthly,in order to obtain a smooth and vivid matte,the result is further refined by considering correlation between neighbouring pixels.Finally,We use online benchmark for image matting to evaluate the proposed method with both qualitative observation and quantitative analysis.The experiments show that our method achieves a competitive advantages over other methods.