The Last Glacial Maximum (LGM, c. 26-16 ka) and the Holocene Optimum (HO, c. 9-5 ka) were characterized by cold-dry and warm-wet climates respectively in the recently geological Earth. How Chinese deserts and sand fie...The Last Glacial Maximum (LGM, c. 26-16 ka) and the Holocene Optimum (HO, c. 9-5 ka) were characterized by cold-dry and warm-wet climates respectively in the recently geological Earth. How Chinese deserts and sand fields responded to these distinctive climatic changes is still not clear, however. To reconstruct environments of the deserts and sand fields during the LGM and HO is helpful to understand the forcing mechanisms of environment change in this arid region, and to test paleoclimatic modeling results. Through our long-term field and laboratory investigations, 400 optically stimulated luminescence (OSL) ages and more than 100 depositional records in the Chinese deserts and sand fields were obtained; on the basis of these data, we reconstruct spatial distributions of the deserts and sand fields during the LGM and HO. Our results show that the sand fields of Mu Us, Hunshandake, Horqin and Hulun Buir in northern and northeastern China had expanded 25%, 37%, 38% and 270%, respectively, during the LGM; the sand fields of Gonghe in the northeastern Qinghai-Tibetan Plateau had expanded 20%, and the deserts of Badain Jaran, Tengger in central northern China had expanded 39% and 29% separately during the LGM; the deserts of Taklimakan, Gurbantünggüt and Kumtag in northwestern China had expanded 10%-20% respectively, compared to their modern areas. On the other hand, all of the sand fields were nearly completely covered by vegetation during the HO; the deserts in northwestern and central northern China were reduced by around 5%-20% in area during this time. Lakes in this arid region were probably expanded during the HO but this conclusion needs more investigation. Compared with the geological distributions of deserts and sand fields, human activity has clearly changed (expanded) the area of active sand dunes at the present time. Our observations show that environmental conditions of Chinese deserts and sand fields are controlled by regional climate together with human activity.展开更多
According to a deformed mild-slope equation derived by Guang-wen Hong and an enhanced numerical method, a wave refraction-diffraction nonlinear mathematical model that takes tidal level change and the high-order bathy...According to a deformed mild-slope equation derived by Guang-wen Hong and an enhanced numerical method, a wave refraction-diffraction nonlinear mathematical model that takes tidal level change and the high-order bathymetry factor into account has been developed. The deformed mild-slope equation is used to eliminate the restriction of wave length on calculation steps. Using the hard disk to record data during the calculation process, the enhanced numerical method can save computer memory space to a certain extent, so that a large-scale sea area can be calculated with high-resolution grids. This model was applied to wave field integral calculation over a radial sand ridge field in the South Yellow Sea. The results demonstrate some features of the wave field: (1) the wave-height contour lines are arc-shaped near the shore; (2) waves break many times when they propagate toward the shore; (3) wave field characteristics on the northern and southern sides of Huangshayang are different; and (4) the characteristics of wave distribution match the terrain features. The application of this model in the region of the radial sand ridge field suggests that it is a feasible way to analyze wave refraction-diffraction effects under natural sea conditions.展开更多
Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mul...Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mulched fields( GSMFs) with different gravel mulched years( 1,6,12,19 and 25 years) were studied. The results showed that in the composition of soil microbes in the GSMFs,the quantity of bacteria was the largest,followed by actinomycetes,while the number of fungi was the smallest. The total quantity of soil microorganisms in the GSMFs dropped rapidly with the increase of soil depth,which was related to the sudden decrease in the quantity of bacteria. The number of microbes in the RDL was larger than that in the SGSML with few roots due to the effects of root distribution. The number of bacteria and actinomycete in the growing season was larger than that in the non-growing season,while the quantity of fungi in the growing season was smaller than that in the non-growing season. The quantity of bacteria and fungi was the largest in the GSMFs which had been mulched with gravel for 6-12 years. With the increase of mulching time,the GSMFs aged gradually,so their quantity reduced gradually. The quantity of actinomycetes was the smallest in the GSMFs which had been mulched with gravel for 6-12 years and increased with the increase of mulching time. The number of soil microbes in the GSMFs had a good correlation with soil moisture content,p H and mulching time. Soil total carbon content was an important factor restricting the quantity of soil microbes in the GSMFs.展开更多
Some field experimental results have shown that the moving sands or dust aerosols in nature are usually electrified,and those charged particles also produce a strong electric field in air, which is named as wind-blown...Some field experimental results have shown that the moving sands or dust aerosols in nature are usually electrified,and those charged particles also produce a strong electric field in air, which is named as wind-blown sand electric field.Some scholars have pointed out that the net charge on the particle significantly enhances its electromagnetic(EM) extinction properties, but up to now, there is no conclusive research on the effect of the environmental electric field. Based on the extended Mie theory, the effect of the electric field in a sandstorm on the EM attenuation properties of the charged larger dust particle is studied. The numerical results indicate that the environmental electric field also has a great influence on the particle's optical properties, and the stronger the electric field, the bigger the effect. In addition, the charged angle, the charge density, and the particle radius all have a specific impact on the charged particle's optical properties.展开更多
Windblown sand flux and dune field evolving toward the oasis have been a common ecological and environmental threat confronted by many countries.Meanwhile,it is also a kind of complex dynamical process involving multi...Windblown sand flux and dune field evolving toward the oasis have been a common ecological and environmental threat confronted by many countries.Meanwhile,it is also a kind of complex dynamical process involving multiple temporal and spatial scales which is still out of accurate description through current field observations.Available models and reliable quantitative simulations are of significant value to predict the spreading rate of desertification and provide an optimal design for sand prevention.This paper presents a 'triple-jump' method to realize quantitative simulations to the formation and evolution of an aeolian dune field from an arbitrary initial configuration.Simulated results achieve a satisfactory agreement with observations qualitatively and quantitatively,which also reveal the characteristics and dynamical behaviors of dunes and dune field.Such a paradigm is of a good level of generality,which provides an exploratory probe into the subject of multi-scale physics.展开更多
基金supported by the Global Changes Program of Ministry of Science and Technology of China(2010CB950203)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05120704)+1 种基金the National Natural Science Foundation of China(40930103 and 41021002)China National Science and Technology Basic Work Program(2006FY110800 and 2012FY111700)
文摘The Last Glacial Maximum (LGM, c. 26-16 ka) and the Holocene Optimum (HO, c. 9-5 ka) were characterized by cold-dry and warm-wet climates respectively in the recently geological Earth. How Chinese deserts and sand fields responded to these distinctive climatic changes is still not clear, however. To reconstruct environments of the deserts and sand fields during the LGM and HO is helpful to understand the forcing mechanisms of environment change in this arid region, and to test paleoclimatic modeling results. Through our long-term field and laboratory investigations, 400 optically stimulated luminescence (OSL) ages and more than 100 depositional records in the Chinese deserts and sand fields were obtained; on the basis of these data, we reconstruct spatial distributions of the deserts and sand fields during the LGM and HO. Our results show that the sand fields of Mu Us, Hunshandake, Horqin and Hulun Buir in northern and northeastern China had expanded 25%, 37%, 38% and 270%, respectively, during the LGM; the sand fields of Gonghe in the northeastern Qinghai-Tibetan Plateau had expanded 20%, and the deserts of Badain Jaran, Tengger in central northern China had expanded 39% and 29% separately during the LGM; the deserts of Taklimakan, Gurbantünggüt and Kumtag in northwestern China had expanded 10%-20% respectively, compared to their modern areas. On the other hand, all of the sand fields were nearly completely covered by vegetation during the HO; the deserts in northwestern and central northern China were reduced by around 5%-20% in area during this time. Lakes in this arid region were probably expanded during the HO but this conclusion needs more investigation. Compared with the geological distributions of deserts and sand fields, human activity has clearly changed (expanded) the area of active sand dunes at the present time. Our observations show that environmental conditions of Chinese deserts and sand fields are controlled by regional climate together with human activity.
基金supported by the Ph.D. Programs Foundation of the Ministry of Education of China (Grant No.20070294026)
文摘According to a deformed mild-slope equation derived by Guang-wen Hong and an enhanced numerical method, a wave refraction-diffraction nonlinear mathematical model that takes tidal level change and the high-order bathymetry factor into account has been developed. The deformed mild-slope equation is used to eliminate the restriction of wave length on calculation steps. Using the hard disk to record data during the calculation process, the enhanced numerical method can save computer memory space to a certain extent, so that a large-scale sea area can be calculated with high-resolution grids. This model was applied to wave field integral calculation over a radial sand ridge field in the South Yellow Sea. The results demonstrate some features of the wave field: (1) the wave-height contour lines are arc-shaped near the shore; (2) waves break many times when they propagate toward the shore; (3) wave field characteristics on the northern and southern sides of Huangshayang are different; and (4) the characteristics of wave distribution match the terrain features. The application of this model in the region of the radial sand ridge field suggests that it is a feasible way to analyze wave refraction-diffraction effects under natural sea conditions.
基金Supported by Sheng Tongsheng Science and Technology Innovation Foundation of Gansu Agricultural University(GSAU-STS-1427)Open Foundation for Breeding Base of National Key Laboratory Co-founded by Gansu Province+1 种基金the Ministry of Science and Technology-Gansu Provincial Key Lab of Aridland Crop Science(GSCS-2012-14)National Natural Science Foundation of China(31560356)
文摘Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mulched fields( GSMFs) with different gravel mulched years( 1,6,12,19 and 25 years) were studied. The results showed that in the composition of soil microbes in the GSMFs,the quantity of bacteria was the largest,followed by actinomycetes,while the number of fungi was the smallest. The total quantity of soil microorganisms in the GSMFs dropped rapidly with the increase of soil depth,which was related to the sudden decrease in the quantity of bacteria. The number of microbes in the RDL was larger than that in the SGSML with few roots due to the effects of root distribution. The number of bacteria and actinomycete in the growing season was larger than that in the non-growing season,while the quantity of fungi in the growing season was smaller than that in the non-growing season. The quantity of bacteria and fungi was the largest in the GSMFs which had been mulched with gravel for 6-12 years. With the increase of mulching time,the GSMFs aged gradually,so their quantity reduced gradually. The quantity of actinomycetes was the smallest in the GSMFs which had been mulched with gravel for 6-12 years and increased with the increase of mulching time. The number of soil microbes in the GSMFs had a good correlation with soil moisture content,p H and mulching time. Soil total carbon content was an important factor restricting the quantity of soil microbes in the GSMFs.
基金supported by the National Natural Science Foundation of China(Grant Nos.11562017 and 11302111)the CAS "Light of West China" Program(Grant No.XAB2017AW03)the Major Innovation Projects for Building First-class Universities in China’s Western Region(Grant No.ZKZD2017006)
文摘Some field experimental results have shown that the moving sands or dust aerosols in nature are usually electrified,and those charged particles also produce a strong electric field in air, which is named as wind-blown sand electric field.Some scholars have pointed out that the net charge on the particle significantly enhances its electromagnetic(EM) extinction properties, but up to now, there is no conclusive research on the effect of the environmental electric field. Based on the extended Mie theory, the effect of the electric field in a sandstorm on the EM attenuation properties of the charged larger dust particle is studied. The numerical results indicate that the environmental electric field also has a great influence on the particle's optical properties, and the stronger the electric field, the bigger the effect. In addition, the charged angle, the charge density, and the particle radius all have a specific impact on the charged particle's optical properties.
基金supported by the National Natural Science Foundation of China (10872082,11002064)the Science Foundation of Ministry of Education of China(308022)
文摘Windblown sand flux and dune field evolving toward the oasis have been a common ecological and environmental threat confronted by many countries.Meanwhile,it is also a kind of complex dynamical process involving multiple temporal and spatial scales which is still out of accurate description through current field observations.Available models and reliable quantitative simulations are of significant value to predict the spreading rate of desertification and provide an optimal design for sand prevention.This paper presents a 'triple-jump' method to realize quantitative simulations to the formation and evolution of an aeolian dune field from an arbitrary initial configuration.Simulated results achieve a satisfactory agreement with observations qualitatively and quantitatively,which also reveal the characteristics and dynamical behaviors of dunes and dune field.Such a paradigm is of a good level of generality,which provides an exploratory probe into the subject of multi-scale physics.