In this paper, the sand transport during a sand-dust storm in the Tazhong area of the central Taklimakan Desert from 11:29 to 23:56 on July 19, 2008 was observed and measured in real time. The sand flux at Tazhong w...In this paper, the sand transport during a sand-dust storm in the Tazhong area of the central Taklimakan Desert from 11:29 to 23:56 on July 19, 2008 was observed and measured in real time. The sand flux at Tazhong was estimated using sand transport empirical formulas. The critical friction velocity at Tazhong was 0.24 m/s and the functional relation between the wind speed and sediment discharge at the height of 2 m was established. It was also found that the calculated values by Lettau's sediment discharge formula were close to those of the instrument measurements. The horizontal sand flux and the vertical sand flux during this sand-dust storm at Tazhong were respectively 258.67×10-4 kg/(m·s) and 40.07×10-7 kg/(m2·s).展开更多
The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding eff...The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding effect of the sand-blocking fence is below the expectation. In this study, effects of metal net fences with porosities of 0.5 and 0.7 were tested in a wind tunnel to determine the effectiveness of the employed two kinds of fences in reducing wind velocity and restraining wind-blown sand. Specifically, the horizontal wind velocities and sediment flux densities above the gravel surface were measured under different free-stream wind velocities for the following conditions: no fence at all, single fence with a porosity of 0.5, single fence with a porosity of 0.7, double fences with a porosity of 0.5, and double fences with a porosity of 0.7. Experimental results showed that the horizontal wind velocity was more significantly decreased by the fence with a porosity of 0.5, especially for the double fences. The horizontal wind velocity decreased approximately 65% at a distance of 3.25 m(i.e., 13 H, where H denotes the fence height) downwind the double fences, and no reverse flow or vortex was observed on the leeward side. The sediment flux density decreased exponentially with height above the gravel surface downwind in all tested fences. The reduction percentage of total sediment flux density was higher for the fence with a porosity of 0.5 than for the fence with a porosity of 0.7, especially for the double fences. Furthermore, the decreasing percentage of total sediment flux density decreased with increasing free-stream wind velocity. The results suggest that compared with metal net fence with a porosity of 0.7, the metal net fence with a porosity of 0.5 is more effective for controlling wind-blown sand in the expansive windy area where the Lanzhou-Xinjiang High-speed Railway runs through.展开更多
The measured data in the wind-tunnel tests show that the wind-blown sand particles acquired a negative charge when their diameters are smaller than 250 μm and positive charge when their diameters are larger than 500 ...The measured data in the wind-tunnel tests show that the wind-blown sand particles acquired a negative charge when their diameters are smaller than 250 μm and positive charge when their diameters are larger than 500 μm, which confirms Latham’s assumption that the large particles in wind-blown sand flux acquired positive charge while negative charge developed on small ones. In the meanwhile, the measured data also show that the average charge-to-mass ratio for wind-blown sand particles decreases with the increase of the particle diameter and the wind velocity, and increases with the rise of height. The electric field in wind-blown sand flux is mainly formed by the moving charged sand particles. Its direction is vertical to the Earth’s surface and upward, which is opposite to that of the fair-weather field. The electric field increases with wind velocity and height increasing. These experimental results will lay the foundation for developing the theoretical analysis of the electrification phenomenon in展开更多
The near-bed airflow and the movement of sand dune sediments by wind are fundamental dune geomorphological processes.This research measured the wind profiles and sand mass flux on the rounded top of a transverse dune ...The near-bed airflow and the movement of sand dune sediments by wind are fundamental dune geomorphological processes.This research measured the wind profiles and sand mass flux on the rounded top of a transverse dune at the southern edge of the Tengger Desert to examine how to best predict the vertical profile of sand flux.This work also tested the accuracy of previously developed models in predicting the apparent roughness length during saltation.Results show that mass flux vertical distribution over the dune top is underestimated by an exponential function,overestimated by a power function,but closely matches the predictions made using the LgstcDoseRsp function.Given suitable values ofα,βandγaccording to the grain size composition,S?rensen equation with the peaked shape of the mass transport curve will well predict the dimensionless mass flux qg/ρu*3against dimensionless shear velocity u*/u*t.The modified Charnock model works best of the previously published models tested,with an R2of 0.783 in predicting the enhanced roughness over the moving sand surface,as opposed to an R2of0.758 for the Owen model and an R2of 0.547 for the Raupach model.For the rounded dune top in this study,C m=0.446±0.016.展开更多
Lift-off velocity of saltating sand particles in wind-blown sand located at 1.0 mm above the sand bed surface was measured using a phase Doppler particle analyzer in a wind tunnel. The results show that the probabilit...Lift-off velocity of saltating sand particles in wind-blown sand located at 1.0 mm above the sand bed surface was measured using a phase Doppler particle analyzer in a wind tunnel. The results show that the probability distribution of lift-off velocity can be expressed as a lognormal function, while that of lift-off angle follows an exponential function. The probability distribution of lift-off angle conditioned for each lift-off velocity also follows an exponential function, with a slope that becomes steeper with increasing lift-off velocity. This implies that the probability distribution of lift-off velocity is strongly dependent on the lift-off angle. However, these lift-off parameters are generally treated as an independent joint probability distribution in the literature. Numerical simulations were carried out to investigate the effects of conditional versus independent joint probability distributions on the vertical sand mass flux distribution. The simulation results derived from the conditional joint probability distribution agree much better with experimental data than those from the independent ones. Thus, it is better to describe the lift-off velocity of saltating sand particles using the conditional joint probability distribution. These results improve our understanding of saltation processes in wind-blown sand.展开更多
With the discrete element method(DEM) ,employing the diameter distribution of natural sands sampled from the Tengger Desert,a mixed-size sand bed was produced and the particle-bed collision was simulated in the mixed-...With the discrete element method(DEM) ,employing the diameter distribution of natural sands sampled from the Tengger Desert,a mixed-size sand bed was produced and the particle-bed collision was simulated in the mixed-size wind sand movement. In the simulation,the shear wind velocity,particle diameter,incident velocity and incident angle of the impact sand particle were given the same values as the experimental results. After the particle-bed collision,we collected all the initial velocities of rising sand particles,including the liftoff angular velocities,liftoff linear velocities and their horizontal and vertical components. By the statistical analysis on the velocity sample for each velocity component,its probability density functions were obtained,and they are the functions of the shear wind velocity. The liftoff velocities and their horizontal and vertical components are distributed as an exponential density function,while the angular velocities are distributed as a normal density function.展开更多
Dust storm events,especially those associated with strong winds,are immediately dangerous,and have long-term harmful effects.During a dust storm event,dust in the near-surface atmospheric layer decreases visibility,an...Dust storm events,especially those associated with strong winds,are immediately dangerous,and have long-term harmful effects.During a dust storm event,dust in the near-surface atmospheric layer decreases visibility,and changes local meteorological parameters.In this paper,we analyzed levels of near-surface turbulence during and outside a dust storm event and found differences in the degree of turbulence,with wind speed increasing and amounts of windblown sand greatly increasing air turbu-lence during the dust storms compared with the corresponding values on a sunny day.In addition,the wind profile during the dust storm deviated from the normal profile and became more complex.In the near-surface atmospheric layer,sand and dust flux during the dust storm also differed from those on a sunny day.展开更多
Tazhong is the hinterland and a sandstorm high-frequency area of the Taklimakan Desert. However, little is known about the detailed time-series of aeolian sand transport in this area. An experiment to study the sand-d...Tazhong is the hinterland and a sandstorm high-frequency area of the Taklimakan Desert. However, little is known about the detailed time-series of aeolian sand transport in this area. An experiment to study the sand-dust horizontal flux of near-surface was carried out in Tazhong from January to December 2009. By measur- ing the sand-dust horizontal flux throughout sixteen sand-dust weather processes with a 200-cm tall Big Spring Number Eight (BSNE) sampler tower, we quantitatively analyzed the vertical variation of the sand-dust horizontal flux. And the total sand-dust horizontal flux of different time-series that passed through a section of 100 cm in width and 200 cm in height was estimated combining the data of saltation movement continuously recorded by piezo- electric saltation sensors (Sensit). The results indicated that, in the surface layer ranging from 0-200 cm, the inten- sity of sand-dust horizontal flux decreased with the increase of the height, and the physical quantities obeyed power function well. The total sand-dust horizontal flux of the sixteen sand-dust weather processes that passed through a section of 100 cm in width and 200 cm in height was about 2,144.9 kg, the maximum of one sand-dust weather event was about 396.3 kg, and the annual total sand-dust horizontal flux was about 3,903.2 kg. The high levels of aeolian sand transport occurred during daytime, especially from 13:00 to 16:00 in the afternoon. We try to develop a new method for estimation of the detailed time-series of aeolian sand transport.展开更多
Many desert expressways are affected by the deposition of the wind-blown sand,which might block the movement of vehicles or cause accidents.W-beam central guardrails,which are used to improve the safety of desert expr...Many desert expressways are affected by the deposition of the wind-blown sand,which might block the movement of vehicles or cause accidents.W-beam central guardrails,which are used to improve the safety of desert expressways,are thought to influence the deposition of the wind-blown sand,but this has yet not to be studied adequately.To address this issue,we conducted a wind tunnel test to simulate and explore how the W-beam central guardrails affect the airflow,the wind-blown sand flux and the deposition of the wind-blown sand on desert expressways in sandy regions.The subgrade model is 3.5 cm high and 80.0 cm wide,with a bank slope ratio of 1:3.The W-beam central guardrails model is 3.7 cm high,which included a 1.4-cm-high W-beam and a 2.3-cm-high stand column.The wind velocity was measured by using pitot-static tubes placed at nine different heights(1,2,3,5,7,10,15,30 and 50 cm)above the floor of the chamber.The vertical distribution of the wind-blown sand flux in the wind tunnel was measured by using the sand sampler,which was sectioned into 20 intervals.In addition,we measured the wind-blown sand flux in the field at K50 of the Bachu-Shache desert expressway in the Taklimakan Desert on 11 May 2016,by using a customized 78-cm-high gradient sand sampler for the sand flux structure test.Obstruction by the subgrade leads to the formation of two weak wind zones located at the foot of the windward slope and at the leeward slope of the subgrade,and the wind velocity on the leeward side weakens significantly.The W-beam central guardrails decrease the leeward wind velocity,whereas the velocity increases through the bottom gaps and over the top of the W-beam central guardrails.The vertical distribution of the wind-blown sand flux measured by wind tunnel follows neither a power-law nor an exponential function when affected by either the subgrade or the W-beam central guardrails.At 0.0H and 0.5H(where H=3.5 cm,which is the height of the subgrade),the sand transport is less at the 3 cm height from the subgrade surface than at the 1 and 5 cm heights as a result of obstruction by the W-beam central guardrails,and the maximum sand transportation occurs at the 5 cm height affected by the subgrade surface.The average saltation height in the presence of the W-beam central guardrails is greater than the subgrade height.The field test shows that the sand deposits on the overtaking lane leeward of the W-beam central guardrails and that the thickness of the deposited sand is determined by the difference in the sand mass transported between the inlet and outlet points,which is consistent with the position of the minimum wind velocity in the wind tunnel test.The results of this study could help us to understand the hazards of the wind-blown sand onto subgrade with the W-beam central guardrails.展开更多
基金funded by the National Key Technology R&D Program (2008BAC40B05-01)the National Department of Public Benefit (Meteorology) Research Foundation (GYHY201006012)+3 种基金 Science and Technology Key Project of Xinjiang Uygur autonomous region (200833119)the Research Foundation of China Desert Meteorology (Sqj2010014, Sqj2010007)the Meteorological New Technology Projects of China Meteorological Administration (CMATG2010M29) the Research Foundation of China Arid Meteorology (IAM201013)
文摘In this paper, the sand transport during a sand-dust storm in the Tazhong area of the central Taklimakan Desert from 11:29 to 23:56 on July 19, 2008 was observed and measured in real time. The sand flux at Tazhong was estimated using sand transport empirical formulas. The critical friction velocity at Tazhong was 0.24 m/s and the functional relation between the wind speed and sediment discharge at the height of 2 m was established. It was also found that the calculated values by Lettau's sediment discharge formula were close to those of the instrument measurements. The horizontal sand flux and the vertical sand flux during this sand-dust storm at Tazhong were respectively 258.67×10-4 kg/(m·s) and 40.07×10-7 kg/(m2·s).
基金financially supported by the Scientific and Technological Services Network Planning Project of Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (HHS-TSS-STS-1504)the Technological Research and Developmental Planning Projects of China Railway Corporation (2015G005-B)the National Natural Science Foundation of China (41501010, 41401611)
文摘The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding effect of the sand-blocking fence is below the expectation. In this study, effects of metal net fences with porosities of 0.5 and 0.7 were tested in a wind tunnel to determine the effectiveness of the employed two kinds of fences in reducing wind velocity and restraining wind-blown sand. Specifically, the horizontal wind velocities and sediment flux densities above the gravel surface were measured under different free-stream wind velocities for the following conditions: no fence at all, single fence with a porosity of 0.5, single fence with a porosity of 0.7, double fences with a porosity of 0.5, and double fences with a porosity of 0.7. Experimental results showed that the horizontal wind velocity was more significantly decreased by the fence with a porosity of 0.5, especially for the double fences. The horizontal wind velocity decreased approximately 65% at a distance of 3.25 m(i.e., 13 H, where H denotes the fence height) downwind the double fences, and no reverse flow or vortex was observed on the leeward side. The sediment flux density decreased exponentially with height above the gravel surface downwind in all tested fences. The reduction percentage of total sediment flux density was higher for the fence with a porosity of 0.5 than for the fence with a porosity of 0.7, especially for the double fences. Furthermore, the decreasing percentage of total sediment flux density decreased with increasing free-stream wind velocity. The results suggest that compared with metal net fence with a porosity of 0.7, the metal net fence with a porosity of 0.5 is more effective for controlling wind-blown sand in the expansive windy area where the Lanzhou-Xinjiang High-speed Railway runs through.
基金the National Outstanding Youth Fund (Grant No. 19725207) and the Natural Science Fund of Gansu Province.
文摘The measured data in the wind-tunnel tests show that the wind-blown sand particles acquired a negative charge when their diameters are smaller than 250 μm and positive charge when their diameters are larger than 500 μm, which confirms Latham’s assumption that the large particles in wind-blown sand flux acquired positive charge while negative charge developed on small ones. In the meanwhile, the measured data also show that the average charge-to-mass ratio for wind-blown sand particles decreases with the increase of the particle diameter and the wind velocity, and increases with the rise of height. The electric field in wind-blown sand flux is mainly formed by the moving charged sand particles. Its direction is vertical to the Earth’s surface and upward, which is opposite to that of the fair-weather field. The electric field increases with wind velocity and height increasing. These experimental results will lay the foundation for developing the theoretical analysis of the electrification phenomenon in
基金supported by the National Natural Science Foundation of China(Grant Nos.41171004&40871015)
文摘The near-bed airflow and the movement of sand dune sediments by wind are fundamental dune geomorphological processes.This research measured the wind profiles and sand mass flux on the rounded top of a transverse dune at the southern edge of the Tengger Desert to examine how to best predict the vertical profile of sand flux.This work also tested the accuracy of previously developed models in predicting the apparent roughness length during saltation.Results show that mass flux vertical distribution over the dune top is underestimated by an exponential function,overestimated by a power function,but closely matches the predictions made using the LgstcDoseRsp function.Given suitable values ofα,βandγaccording to the grain size composition,S?rensen equation with the peaked shape of the mass transport curve will well predict the dimensionless mass flux qg/ρu*3against dimensionless shear velocity u*/u*t.The modified Charnock model works best of the previously published models tested,with an R2of 0.783 in predicting the enhanced roughness over the moving sand surface,as opposed to an R2of0.758 for the Owen model and an R2of 0.547 for the Raupach model.For the rounded dune top in this study,C m=0.446±0.016.
基金supported by the Fundamental Research Funds for the Central Universities of China(GK201503053)the National Natural Science Foundation of China(41601002)
文摘Lift-off velocity of saltating sand particles in wind-blown sand located at 1.0 mm above the sand bed surface was measured using a phase Doppler particle analyzer in a wind tunnel. The results show that the probability distribution of lift-off velocity can be expressed as a lognormal function, while that of lift-off angle follows an exponential function. The probability distribution of lift-off angle conditioned for each lift-off velocity also follows an exponential function, with a slope that becomes steeper with increasing lift-off velocity. This implies that the probability distribution of lift-off velocity is strongly dependent on the lift-off angle. However, these lift-off parameters are generally treated as an independent joint probability distribution in the literature. Numerical simulations were carried out to investigate the effects of conditional versus independent joint probability distributions on the vertical sand mass flux distribution. The simulation results derived from the conditional joint probability distribution agree much better with experimental data than those from the independent ones. Thus, it is better to describe the lift-off velocity of saltating sand particles using the conditional joint probability distribution. These results improve our understanding of saltation processes in wind-blown sand.
基金the Key Project of the National Natural Science Foundation of China (Grant No. 10532040)
文摘With the discrete element method(DEM) ,employing the diameter distribution of natural sands sampled from the Tengger Desert,a mixed-size sand bed was produced and the particle-bed collision was simulated in the mixed-size wind sand movement. In the simulation,the shear wind velocity,particle diameter,incident velocity and incident angle of the impact sand particle were given the same values as the experimental results. After the particle-bed collision,we collected all the initial velocities of rising sand particles,including the liftoff angular velocities,liftoff linear velocities and their horizontal and vertical components. By the statistical analysis on the velocity sample for each velocity component,its probability density functions were obtained,and they are the functions of the shear wind velocity. The liftoff velocities and their horizontal and vertical components are distributed as an exponential density function,while the angular velocities are distributed as a normal density function.
基金the National Natural Science Foundation of China (Grant No.40638038)
文摘Dust storm events,especially those associated with strong winds,are immediately dangerous,and have long-term harmful effects.During a dust storm event,dust in the near-surface atmospheric layer decreases visibility,and changes local meteorological parameters.In this paper,we analyzed levels of near-surface turbulence during and outside a dust storm event and found differences in the degree of turbulence,with wind speed increasing and amounts of windblown sand greatly increasing air turbu-lence during the dust storms compared with the corresponding values on a sunny day.In addition,the wind profile during the dust storm deviated from the normal profile and became more complex.In the near-surface atmospheric layer,sand and dust flux during the dust storm also differed from those on a sunny day.
基金funded by the National Natural Science Foundation of China (41175017)the Central Scientific Research Institute of the public basic scientific research business professional ( IDM201103)the R&D Special Fund for Public Welfare Industry (Meteorology)(GYHY201106025)
文摘Tazhong is the hinterland and a sandstorm high-frequency area of the Taklimakan Desert. However, little is known about the detailed time-series of aeolian sand transport in this area. An experiment to study the sand-dust horizontal flux of near-surface was carried out in Tazhong from January to December 2009. By measur- ing the sand-dust horizontal flux throughout sixteen sand-dust weather processes with a 200-cm tall Big Spring Number Eight (BSNE) sampler tower, we quantitatively analyzed the vertical variation of the sand-dust horizontal flux. And the total sand-dust horizontal flux of different time-series that passed through a section of 100 cm in width and 200 cm in height was estimated combining the data of saltation movement continuously recorded by piezo- electric saltation sensors (Sensit). The results indicated that, in the surface layer ranging from 0-200 cm, the inten- sity of sand-dust horizontal flux decreased with the increase of the height, and the physical quantities obeyed power function well. The total sand-dust horizontal flux of the sixteen sand-dust weather processes that passed through a section of 100 cm in width and 200 cm in height was about 2,144.9 kg, the maximum of one sand-dust weather event was about 396.3 kg, and the annual total sand-dust horizontal flux was about 3,903.2 kg. The high levels of aeolian sand transport occurred during daytime, especially from 13:00 to 16:00 in the afternoon. We try to develop a new method for estimation of the detailed time-series of aeolian sand transport.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences"Environmental Changes and Green Silk Road Construction in Pan-Third Pole Region"(XDA2003020201)the National Key Research and Development Program of China(2017YFE0109200)the National Natural Science Foundation of China(41571011)
文摘Many desert expressways are affected by the deposition of the wind-blown sand,which might block the movement of vehicles or cause accidents.W-beam central guardrails,which are used to improve the safety of desert expressways,are thought to influence the deposition of the wind-blown sand,but this has yet not to be studied adequately.To address this issue,we conducted a wind tunnel test to simulate and explore how the W-beam central guardrails affect the airflow,the wind-blown sand flux and the deposition of the wind-blown sand on desert expressways in sandy regions.The subgrade model is 3.5 cm high and 80.0 cm wide,with a bank slope ratio of 1:3.The W-beam central guardrails model is 3.7 cm high,which included a 1.4-cm-high W-beam and a 2.3-cm-high stand column.The wind velocity was measured by using pitot-static tubes placed at nine different heights(1,2,3,5,7,10,15,30 and 50 cm)above the floor of the chamber.The vertical distribution of the wind-blown sand flux in the wind tunnel was measured by using the sand sampler,which was sectioned into 20 intervals.In addition,we measured the wind-blown sand flux in the field at K50 of the Bachu-Shache desert expressway in the Taklimakan Desert on 11 May 2016,by using a customized 78-cm-high gradient sand sampler for the sand flux structure test.Obstruction by the subgrade leads to the formation of two weak wind zones located at the foot of the windward slope and at the leeward slope of the subgrade,and the wind velocity on the leeward side weakens significantly.The W-beam central guardrails decrease the leeward wind velocity,whereas the velocity increases through the bottom gaps and over the top of the W-beam central guardrails.The vertical distribution of the wind-blown sand flux measured by wind tunnel follows neither a power-law nor an exponential function when affected by either the subgrade or the W-beam central guardrails.At 0.0H and 0.5H(where H=3.5 cm,which is the height of the subgrade),the sand transport is less at the 3 cm height from the subgrade surface than at the 1 and 5 cm heights as a result of obstruction by the W-beam central guardrails,and the maximum sand transportation occurs at the 5 cm height affected by the subgrade surface.The average saltation height in the presence of the W-beam central guardrails is greater than the subgrade height.The field test shows that the sand deposits on the overtaking lane leeward of the W-beam central guardrails and that the thickness of the deposited sand is determined by the difference in the sand mass transported between the inlet and outlet points,which is consistent with the position of the minimum wind velocity in the wind tunnel test.The results of this study could help us to understand the hazards of the wind-blown sand onto subgrade with the W-beam central guardrails.