Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mul...Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mulched fields( GSMFs) with different gravel mulched years( 1,6,12,19 and 25 years) were studied. The results showed that in the composition of soil microbes in the GSMFs,the quantity of bacteria was the largest,followed by actinomycetes,while the number of fungi was the smallest. The total quantity of soil microorganisms in the GSMFs dropped rapidly with the increase of soil depth,which was related to the sudden decrease in the quantity of bacteria. The number of microbes in the RDL was larger than that in the SGSML with few roots due to the effects of root distribution. The number of bacteria and actinomycete in the growing season was larger than that in the non-growing season,while the quantity of fungi in the growing season was smaller than that in the non-growing season. The quantity of bacteria and fungi was the largest in the GSMFs which had been mulched with gravel for 6-12 years. With the increase of mulching time,the GSMFs aged gradually,so their quantity reduced gradually. The quantity of actinomycetes was the smallest in the GSMFs which had been mulched with gravel for 6-12 years and increased with the increase of mulching time. The number of soil microbes in the GSMFs had a good correlation with soil moisture content,p H and mulching time. Soil total carbon content was an important factor restricting the quantity of soil microbes in the GSMFs.展开更多
In semi-arid areas of China,gravel and sand mulch is a farming technique with a long history.In this study,a sample survey was conducted on long term gravel sand mulch observational fields in the Northwest Loess Plate...In semi-arid areas of China,gravel and sand mulch is a farming technique with a long history.In this study,a sample survey was conducted on long term gravel sand mulch observational fields in the Northwest Loess Plateau to determine the effects of long term mulch on soil microbial and soil enzyme activities.We found that after long term gravel-sand mulch,compared with bare ground,soil organic matter,alkali nitrogen,conductivity decreased,while pH and soil moisture increased.Urease,saccharase and catalase decreased with increased mulch thickness,while alkaline phosphatase was reversed.The results of Illumina MiSeq sequencing shows that after gravel-sand mulch,the bacterial and fungal community structure was different from bare land,and the diversity was reduced.Compared with bare land,the bacteria Proteobacteria and Acidobacteria abundance increased with increased thickness,and Actinobacteria was opposite.Also,at the fungal genus level,Fusarium abundance was significantly reduced,and Remersonia was significantly increased,compared with bare land.Redundancy analysis(RDA)revealed that soil environmental factors were important drivers of bacterial community changes.Overall,this study revealed some of the reasons for soil degradation after long term gravel-sand mulch.Therefore,it is recommended that the addition of exogenous soil nutrients after long term gravel-sand can help improve soil quality.展开更多
To know the bacterial communities structure in Babylonia areolata culture systems and to research and optimize the management pattem of Babylonia areola-ta culture systems of the pond mulched plastic film and sand in ...To know the bacterial communities structure in Babylonia areolata culture systems and to research and optimize the management pattem of Babylonia areola-ta culture systems of the pond mulched plastic film and sand in bottom, the bacte- rial communities in Babylonia areolata culture systems of the sub-tidal zone and the pond mulched plastic film and sand in bottom were analyzed at molecular level by adopting the denaturing gradient gel electrophoresis (DGGE). The results indicated that the dominant bacterial communities in Babylonia areolata culture systems of the sub-tidal zone and the pond mulched plastic film and sand in bottom, which were built on the basis of the seawater in East-island of Zhanjiang, included Proteobac- teda Chloroflexi, Cyanobacteria and Actinobacteria. The dominant bacterial groups in the above pond culture system were Garnmaproteobacteria, Alphaproteobacteria, Deltaprotecbacteda, Epsilonproteobacteda, Anaerolineae, Cyanobacteria and Acti- nobacteda. The dominant bacterial communities in the subtidal zone culture system were Gammaprotecbacteda, Alphaproteobacteria, Deltaproteobacteria, Anaerolineae and Cyanobacteda, and there were less Epsilonproteobacteria and Actinobacteria in the culture system. The higher diversity was detected in the above two culture sys- tems. The results of unweighted pair group method with arithmetic average (UPG- MA) showed that the bacterial communities of the sediment samples S1 and S2 in the above two culture systems were a cluster, the similarity of bacterial communities was 54.5%. The bacterial communities of seawater samples S3 and S4 in the above culture systems were in clusters, and the similarity of the bacterial communi- ties was 84.0%. The results showed that the microorganism ecological level in the Babylonia areolata culture systems of the pond mulched plastic film and sand in bottom could be similar to the sub-tidal zone culture systems through changing the pond seawater and monitoring the microbial population.展开更多
The shape,size and coverage of gravels have significant impacts on aeolian sand transport.This study provided an understanding of aeolian transport over the gravel mulching surfaces at different wind velocities by mea...The shape,size and coverage of gravels have significant impacts on aeolian sand transport.This study provided an understanding of aeolian transport over the gravel mulching surfaces at different wind velocities by means of a mobile wind tunnel simulation.The tested gravel coverage increased from 5% to 80%,with a progressive increment of 5%.The gravels used in the experiments have three sizes in diameter.Wind velocities were measured using 10 sand-proof pitot-static probes,and mean velocity fields were obtained and discussed.The results showed that mean velocity fields obtained over different gravel mulches were similar.The analysis of wind speed patterns revealed an inherent link between gravel mulches and mean airflow characteristics on the gravel surfaces.The optimal gravel coverage is considered to be the critical level above or below which aeolian transport characteristics differ strongly.According to the present study,the optimal gravel coverage was found to be around 30% or 40%.Threshold velocity linearly increased with gravel coverage.Sand transport rate first increased with height above the wind tunnel floor(Hf),reaching a peak at some midpoint,and then decreased.展开更多
基金Supported by Sheng Tongsheng Science and Technology Innovation Foundation of Gansu Agricultural University(GSAU-STS-1427)Open Foundation for Breeding Base of National Key Laboratory Co-founded by Gansu Province+1 种基金the Ministry of Science and Technology-Gansu Provincial Key Lab of Aridland Crop Science(GSCS-2012-14)National Natural Science Foundation of China(31560356)
文摘Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mulched fields( GSMFs) with different gravel mulched years( 1,6,12,19 and 25 years) were studied. The results showed that in the composition of soil microbes in the GSMFs,the quantity of bacteria was the largest,followed by actinomycetes,while the number of fungi was the smallest. The total quantity of soil microorganisms in the GSMFs dropped rapidly with the increase of soil depth,which was related to the sudden decrease in the quantity of bacteria. The number of microbes in the RDL was larger than that in the SGSML with few roots due to the effects of root distribution. The number of bacteria and actinomycete in the growing season was larger than that in the non-growing season,while the quantity of fungi in the growing season was smaller than that in the non-growing season. The quantity of bacteria and fungi was the largest in the GSMFs which had been mulched with gravel for 6-12 years. With the increase of mulching time,the GSMFs aged gradually,so their quantity reduced gradually. The quantity of actinomycetes was the smallest in the GSMFs which had been mulched with gravel for 6-12 years and increased with the increase of mulching time. The number of soil microbes in the GSMFs had a good correlation with soil moisture content,p H and mulching time. Soil total carbon content was an important factor restricting the quantity of soil microbes in the GSMFs.
基金This study was funded by the National Key R&D Program(Grant No.2016YFC0501403-3).
文摘In semi-arid areas of China,gravel and sand mulch is a farming technique with a long history.In this study,a sample survey was conducted on long term gravel sand mulch observational fields in the Northwest Loess Plateau to determine the effects of long term mulch on soil microbial and soil enzyme activities.We found that after long term gravel-sand mulch,compared with bare ground,soil organic matter,alkali nitrogen,conductivity decreased,while pH and soil moisture increased.Urease,saccharase and catalase decreased with increased mulch thickness,while alkaline phosphatase was reversed.The results of Illumina MiSeq sequencing shows that after gravel-sand mulch,the bacterial and fungal community structure was different from bare land,and the diversity was reduced.Compared with bare land,the bacteria Proteobacteria and Acidobacteria abundance increased with increased thickness,and Actinobacteria was opposite.Also,at the fungal genus level,Fusarium abundance was significantly reduced,and Remersonia was significantly increased,compared with bare land.Redundancy analysis(RDA)revealed that soil environmental factors were important drivers of bacterial community changes.Overall,this study revealed some of the reasons for soil degradation after long term gravel-sand mulch.Therefore,it is recommended that the addition of exogenous soil nutrients after long term gravel-sand can help improve soil quality.
基金Supported by the Special Program of Scientific and Technological Promotion of Fisheries in Guangdong(A201101I01,A201208E01)the Guangdong Scientific and Technological Planning Program(2012B020415006)~~
文摘To know the bacterial communities structure in Babylonia areolata culture systems and to research and optimize the management pattem of Babylonia areola-ta culture systems of the pond mulched plastic film and sand in bottom, the bacte- rial communities in Babylonia areolata culture systems of the sub-tidal zone and the pond mulched plastic film and sand in bottom were analyzed at molecular level by adopting the denaturing gradient gel electrophoresis (DGGE). The results indicated that the dominant bacterial communities in Babylonia areolata culture systems of the sub-tidal zone and the pond mulched plastic film and sand in bottom, which were built on the basis of the seawater in East-island of Zhanjiang, included Proteobac- teda Chloroflexi, Cyanobacteria and Actinobacteria. The dominant bacterial groups in the above pond culture system were Garnmaproteobacteria, Alphaproteobacteria, Deltaprotecbacteda, Epsilonproteobacteda, Anaerolineae, Cyanobacteria and Acti- nobacteda. The dominant bacterial communities in the subtidal zone culture system were Gammaprotecbacteda, Alphaproteobacteria, Deltaproteobacteria, Anaerolineae and Cyanobacteda, and there were less Epsilonproteobacteria and Actinobacteria in the culture system. The higher diversity was detected in the above two culture sys- tems. The results of unweighted pair group method with arithmetic average (UPG- MA) showed that the bacterial communities of the sediment samples S1 and S2 in the above two culture systems were a cluster, the similarity of bacterial communities was 54.5%. The bacterial communities of seawater samples S3 and S4 in the above culture systems were in clusters, and the similarity of the bacterial communi- ties was 84.0%. The results showed that the microorganism ecological level in the Babylonia areolata culture systems of the pond mulched plastic film and sand in bottom could be similar to the sub-tidal zone culture systems through changing the pond seawater and monitoring the microbial population.
基金supported by the Key Program of Knowledge Innovation Project of the Chinese Academy of Sciences(KZCX2-EW-313)the National Basic Research Program of China (2012CB026105)the National Natural Science Foundation of China (41371027)
文摘The shape,size and coverage of gravels have significant impacts on aeolian sand transport.This study provided an understanding of aeolian transport over the gravel mulching surfaces at different wind velocities by means of a mobile wind tunnel simulation.The tested gravel coverage increased from 5% to 80%,with a progressive increment of 5%.The gravels used in the experiments have three sizes in diameter.Wind velocities were measured using 10 sand-proof pitot-static probes,and mean velocity fields were obtained and discussed.The results showed that mean velocity fields obtained over different gravel mulches were similar.The analysis of wind speed patterns revealed an inherent link between gravel mulches and mean airflow characteristics on the gravel surfaces.The optimal gravel coverage is considered to be the critical level above or below which aeolian transport characteristics differ strongly.According to the present study,the optimal gravel coverage was found to be around 30% or 40%.Threshold velocity linearly increased with gravel coverage.Sand transport rate first increased with height above the wind tunnel floor(Hf),reaching a peak at some midpoint,and then decreased.