期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Mechanical Properties and Microstructure of Portland Cement Concrete Prepared with Coral Reef Sand 被引量:20
1
作者 王乾坤 LI Peng +2 位作者 田亚坡 CHEN Wei SU Chunyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期996-1001,共6页
The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are a... The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densified compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of fine pores in the range of 100 nm. 展开更多
关键词 coral reef sand concrete mechanical properties microstructure interfacial transition zone
下载PDF
Mechanical Properties of Sea Water Sea Sand Coral Concrete Modified with Different Cement and Fiber Types 被引量:2
2
作者 Xibo Qi Yijie Huang +3 位作者 Xiaowei Li Zhenhua Hu Jingwei Ying Dayong Li 《Journal of Renewable Materials》 SCIE EI 2020年第8期915-937,共23页
The mechanical properties of modified sea water sea sand coral concrete(SWSSCC)under axial compression were experimentally studied.Two different parameters were considered in this test:types of cement and fiber.An exp... The mechanical properties of modified sea water sea sand coral concrete(SWSSCC)under axial compression were experimentally studied.Two different parameters were considered in this test:types of cement and fiber.An experimental campaign was developed involving uniaxial compression tests and the use of digital image correlation(DIC)method to analyze the strain distribution and crack propagation of specimen.Test results indicated that the compressive strength and elastic modulus of SWSSCC were improved by adding stainless steel fibers(SSF),while polypropylene fibers(PF)enhanced the SWSSCC peak deformation.It was found that the elastic modulus and strength of SWSSCC using ordinary Portland cement(OPC)were higher compared to specimen with low alkalinity sulphoaluminate cement(LAS).Typical strain distribution changed with the variation of fiber types.The propagation and characteristics of cracks in SWSSCC containing PF were similar to those of cracks in SWSSCC.However,the propagation of cracks and the development of plastic deformation in SWSSCC were effectively hindered by adopting SSF.Finally,an analytical stress-strain expression of specimen considering the influences of fibers was established.The obtained results would provide a basis for the application of SWSSCC. 展开更多
关键词 Sea water sea sand coral concrete modified concrete mechanical properties stress-strain curve crack propagation strain distribution
下载PDF
Basic Properties of Concrete Incorporating Recycled Ceramic Aggregate and Ultra-fine Sand
3
作者 刘凤利 LIU Junhua +2 位作者 马保国 HUANG Jian LI Hainan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期352-360,共9页
Recycled ceramic mixed sand(RCMS) was obtained by partially replacing ultra-fine sand with recycled ceramic coarse sand(RCCS). The effects of RCCS replacement rate on the apparent density, workability, compressive... Recycled ceramic mixed sand(RCMS) was obtained by partially replacing ultra-fine sand with recycled ceramic coarse sand(RCCS). The effects of RCCS replacement rate on the apparent density, workability, compressive strength and splitting tensile strength of recycled ceramic concrete(RCC) were investigated. In addition, the relationship between the water-cement ratio and compressive strength of RCC was also studied. The experimental results indicate that the reusing of recycled ceramic aggregate can improve the cohesiveness and water retentiveness of fresh concrete and benefit the mechanical properties development. When the RCCS replacement rate is not less than 40%, the mechanical properties of RCC are superior to those of the reference concrete. Moreover, when recycled ceramic medium sand was completely used as fine aggregate, the maximum increase in both compressive strength and splitting tensile strength were obtained, comparing with those of reference concrete, the increment ratio was 19.85% and 32.73%, respectively. The microscopic analysis shows that the using of recycled ceramic aggregate can meliorate distinctly the structure of the interfacial transition zone(ITZ) and increase the compaction degree of cement paste. Furthermore, an expression of the compressive strength of RCC and the cement-water ratio is regressed and gains a good linear relativity. It is an effective way to recycle waste ceramic, and the consumption of recycled ceramic aggregate could reach from 26.9% to 47.6% of the total weight of aggregate in producing concrete. 展开更多
关键词 recycled ceramic coarse sand(RCCS) ultra-fine sand recycled ceramic concrete(RCC) property regression analysis sustainability
下载PDF
Effect of Substitution of Cement by Mineral Powders on the Physico-mechanical Properties and Microstructure of Sand Concretes
4
作者 Belkacem Belhadj Justin Houessou +1 位作者 Nicolas Montrelay Michèle Quéneudec 《Journal of Architectural Environment & Structural Engineering Research》 2022年第4期18-29,共12页
The approach that contributes to the development of eco-materials in construction is the use of mineral powders,which can improve mechani­cal properties and reduce cement consumption.This article aims to study th... The approach that contributes to the development of eco-materials in construction is the use of mineral powders,which can improve mechani­cal properties and reduce cement consumption.This article aims to study the effect of substitution by mass of cement with mineral powders on the physicomechanical properties and microstructure of sand concretes.The used mineral powders are A:the limestone,B:the natural pozzolan,C:the hydraulic lime,D:(1/3 limestone+1/3 natural pozzolan+1/3 hydraulic lime),and E:(1/2 natural pozzolan+1/2 hydraulic lime).The studied percentages are 5%,10%and 15%,in both separated and combined states.The studied properties are workability,compressive strength,the elastic­ity modulus in compression,shrinkage and microstructure analysis.The objective is to target the optimal percentage of the substitution of cement with mineral powders,which ensures the best compromise between the main properties of the studied sand concretes.The obtained results show that the optimal percentage is in favor of the substitution of cement by 10%D(1/3 limestone,1/3 natural pozzolan and 1/3 hydraulic lime).Even the 15%of mineral powder D,presented similar performances compared to the sand concrete(without mineral powders).Finally,in the context of the development of eco-materials,it should be noted that the 10%D and 15%D(1/3 limestone,1/3 natural pozzolan and 1/3 hydraulic lime)contribute to decrease the use of cement and consequently to reduce of CO2 emissions. 展开更多
关键词 Eco-materials Sand concretes CEMENTS Mineral powders Physico-mechanical properties MICROSTRUCTURE
下载PDF
Prediction of residual tensile strength of glass fiber reinforced polymer bars in harsh alkaline concrete environment using fuzzy metaheuristic models
5
作者 Mudassir Iqbal Khalid Elbaz +2 位作者 Daxu Zhang Lili Hu Fazal E.Jalal 《Journal of Ocean Engineering and Science》 SCIE 2023年第5期546-558,共13页
The long-term durability of glass fiber reinforced polymer(GFRP)bars in harsh alkaline environments is of great importance in engineering,which is reflected by the environmental reduction factor in vari-ous structural... The long-term durability of glass fiber reinforced polymer(GFRP)bars in harsh alkaline environments is of great importance in engineering,which is reflected by the environmental reduction factor in vari-ous structural codes.The calculation of this factor requires robust models to predict the residual tensile strength of GFRP bars.Therefore,three robust metaheuristic algorithms,namely particle swarm optimiza-tion(PSO),genetic algorithm(GA),and support vector machine(SVM),were deployed in this study for achieving the best hyperparameters in the adaptive neuro-fuzzy inference system(ANFIS)in order to obtain more accurate prediction model.Various optimized models were developed to predict the tensile strength retention(TSR)of degraded GFRP rebars in typical alkaline environments(e.g.,seawater sea sand concrete(SWSSC)environment in this study).The study also proposed more reliable model to predict the TSR of GFRP bars exposed to alkaline environmental conditions under accelerating laboratory aging.A to-tal number of 715 experimental laboratory samples were collected in a form of extensive database to be trained.K-fold cross-validation was used to assess the reliability of the developed models by dividing the dataset into five equal folds.In order to analyze the efficiency of the metaheuristic algorithms,multiple statistical tests were performed.It was concluded that the ANFIS-SVM-based model is robust and accu-rate in predicting the TSR of conditioned GFRP bars.In the meantime,the ANFIS-PSO model also yielded reasonable results concerning the prediction of the tensile strength of GFRP bars in alkaline concrete en-vironment.The sensitivity analysis revealed GFRP bar size,volume fraction of fibers,and pH of solution were the most influential parameters of TSR. 展开更多
关键词 Gfrp Seawater sea sand concrete Durability Metaheuristic Anfis-pso anfis-ga ANFIS-SVM
原文传递
Influence of desert sand on the mechanical properties of concrete subjected to impact loading 被引量:14
6
作者 Liu Haifeng Ma Jurong +1 位作者 Wang Yiying Ning Jianguo 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第6期583-595,共13页
A74-mm-diameter Split Hopkinson pressure bar was used to carry out the dynamic compression experiment of concrete made of desert sand.The dynamic failure processes of concrete different in specimen size,impact velocit... A74-mm-diameter Split Hopkinson pressure bar was used to carry out the dynamic compression experiment of concrete made of desert sand.The dynamic failure processes of concrete different in specimen size,impact velocity,desert sand replacement ratio,size and volume content of coarse aggregate were simulated.Research results showed that concrete made of desert sand had size-effect and was rate-dependent.The peak stress of concrete made of desert sand declined with the minimum size of coarse aggregate.However,the peak stress of concrete made of desert sand increased first,and then declined with the volume content and maximum size of coarse aggregate. 展开更多
关键词 concrete Desert sand Mechanical properties Impact loading
原文传递
Effects of coarse and fine aggregates on long-term mechanical properties of sea sand recycled aggregate concrete 被引量:3
7
作者 Jingwei YlNG Yijie HUANG +2 位作者 Xu GAO Xibo QI Yuedong SUN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第3期754-772,共19页
Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete(SSRAC)are analyzed by a series of axial compression tests.Two different types of fine(coarse)aggregates... Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete(SSRAC)are analyzed by a series of axial compression tests.Two different types of fine(coarse)aggregates are considered:sea sand and river sand(natural and recycled coarse aggregates).Variations in SSRAC properties at different ages are investigated.A novel test system is developed via axial compression experiments and the digital image correlation method to obtain the deformation field and crack development of concrete.Supportive results show that the compressive strength of SSRAC increase with decreasing recycled coarse aggregate replacement percentage and increasing sea sand chloride ion content.The elastic modulus of SSRAC increases with age.However,the Poisson’s ratio reduces after 2 years.Typical axial stress-strain curves of SSRAC vary with age.Generally,the effect of coarse aggregates on the axial deformation of SSRAC is clear;however,the deformation differences between coarse aggregate and cement mortar reduce by adopting sea sand.The aggregate type changes the crack characteristics and propagation of SSRAC.Finally,an analytical expression is suggested to construct the long-term stress-strain curve of SSRAC. 展开更多
关键词 sea sand recycled aggregate concrete recycled coarse aggregate replacement percentage sea sand chloride ion content long-term mechanical properties stress-strain curve
原文传递
Frozen sand-concrete interface direct shear behavior under constant normal load and constant normal height boundary 被引量:1
8
作者 Jian CHANG Jian-kun LIU Ya-li LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第11期917-932,共16页
The shear strength properties of the frozen sand–structure interface are critical for evaluating the serviceability of pile foundations in frozen ground.The shear characteristics of the frozen sand–concrete interfac... The shear strength properties of the frozen sand–structure interface are critical for evaluating the serviceability of pile foundations in frozen ground.The shear characteristics of the frozen sand–concrete interface were studied with two boundary conditions(constant normal load(CNL)and constant normal height(CNH)),at three normal stresses(100,200,and 300 k Pa),and at three temperatures(-2,-5,and-8℃).A detailed comparative analysis was performed to explore the principal factors affecting the shear/normal-shear displacement.The results showed that the shear behavior of the frozen sand–concrete interface under CNL was similar to that under CNH.The shear stress–shear displacement exhibited strain softening.The temperature and normal stress were the major influences on normal properties.The lower the temperature and the higher the normal stress,the greater was the elastic shear modulus.The peak shear stress and critical shear stress exhibited a dependence on normal stress.An exponential growth in the peak shear stress was observed as the temperature decreased.Critical shear stress was dependent on temperature.The value and percentage of peak ice-cementation in peak shear stress was affected by temperature and normal stress. 展开更多
关键词 Frozen sand–concrete interface Peak shear strength Critical shear strength Ice-cementation Boundary condition
原文传递
Compressive behavior and microstructure of concrete mixed with natural seawater and sea sand
9
作者 Qinghai XIE Jianzhuang XIAO +1 位作者 Kaijian ZHANG Zhongling ZONG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第6期1347-1357,共11页
Noncorrosive reinforcement materials facilitate producing structural concrete with seawater and sea sand.This study investigated the properties of seawater and sea sand concrete(SSC),considering the curing age(3,7,14,... Noncorrosive reinforcement materials facilitate producing structural concrete with seawater and sea sand.This study investigated the properties of seawater and sea sand concrete(SSC),considering the curing age(3,7,14,21,28,60,and 150 d)and strength grade(C30,C40,and C60).The compressive behavior of SSC was obtained by compressive tests and digital image correction(DIC)technique.Scanning electron microscope(SEM)and X-ray powder diffraction(XRD)methods were applied to understand the microstructure and hydration products of cement in SSC.Results revealed a 30%decrease in compressive strength for C30 and C40 SSC from 60 to 150 d,and a less than 5%decrease for C60 from 28 to 150 d.DIC results revealed significant cracking and crushing from 80%to 100%of compressive strength.SEM images showed a more compact microstructure in higher strength SSC.XRD patterns identified Friedel’s salt phase due to the chlorides brought by seawater and sea sand.The findings in this study can provide more insights into the microstructure of SSC along with its short-and long-term compressive behavior. 展开更多
关键词 seawater and sea sand concrete compressive strength strain field MICROSTRUCTURE hydration products
原文传递
Durability evaluation of GFRP rebars in harsh alkaline environment using optimized tree-based random forest model
10
作者 Mudassir Iqbal Daxu Zhang Fazal E.Jalal 《Journal of Ocean Engineering and Science》 SCIE 2022年第6期596-606,共11页
GFRP bars reinforced in submerged or moist seawater and ocean concrete is subjected to highly alkaline conditions.While investigating the durability of GFRP bars in alkaline environment,the effect of surrounding tempe... GFRP bars reinforced in submerged or moist seawater and ocean concrete is subjected to highly alkaline conditions.While investigating the durability of GFRP bars in alkaline environment,the effect of surrounding temperature and conditioning duration on tensile strength retention(TSR)of GFRP bars is well investigated with laboratory aging of GFRP bars.However,the role of variable bar size and volume fraction of fiber have been poorly investigated.Additionally,various structural codes recommend the use of an additional environmental reduction factor to accurately reflect the long-term performance of GFRP bars in harsh environments.This study presents the development of Random Forest(RF)regression model to predict the TSR of laboratory conditioned bars in alkaline environment based on a reliable database comprising 772 tested specimens.RF model was optimized,trained,and validated using variety of statistical checks available in the literature.The developed RF model was used for the sensitivity and parametric analysis.Moreover,the formulated RF model was used for studying the long-term performance of GFRP rebars in the alkaline concrete environment.The sensitivity analysis exhibited that temperature and pH are among the most influential attributes in TSR,followed by volume fraction of fibers,duration of conditioning,and diameter of the bars,respectively.The bars with larger diameter and high-volume fraction of fibers are less susceptible to degradation in contrast to the small diameter bars and relatively low fiber’s volume fraction.Also,the long-term performance revealed that the existing recommendations by various codes regarding environmental reduction factors are conservative and therefore needs revision accordingly. 展开更多
关键词 GFRP Seawater and sea sand concrete DURABILITY Mechanical properties DEGRADATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部