The seepage evolution characteristic of brittle rock materials is very significant for the stability and safety of rock engineering. In this research, a series of conventional triaxial compression and gas seepage test...The seepage evolution characteristic of brittle rock materials is very significant for the stability and safety of rock engineering. In this research, a series of conventional triaxial compression and gas seepage tests were carded out on sandstone specimens with a rock mechanics servo-controlled testing system. Based on the experimental results, the relationship between permeability and deformation is firstly analyzed in detail. The results show that the permeabilityaxial strain curve can be divided into the following five phases: the phase of micro-defects closure, the phase of linear elastic deformation, the phase of nonlinear deformation, the phase of post-peak stress softening and the phase of residual strength. The seepage evolution characteristic is also closely correlated with the volumetric deformation according to the relationship between permeability and volumetric strain. It is found that the gas seepage pressure has a great effect on the permeability evolution, i.e. permeability coefficients increase with increasing gas seepage pressures. Finally, the influence of gas seepage pressures on the failure behavior of brittle sandstone specimens is discussed.展开更多
In mature reservoirs,the success of preformed particle gel(PPG) treatment rests primarily on the ability of the PPG to reduce and/or plug the high permeable formations,but not damage the low permeable formations.Sta...In mature reservoirs,the success of preformed particle gel(PPG) treatment rests primarily on the ability of the PPG to reduce and/or plug the high permeable formations,but not damage the low permeable formations.Static test models(filtration test model and pressure test model)were used to determine the effect of PPG on low permeable formations.This work used a strong preformed particle gel,Daqing(DQ) gel made by a Chinese company.The particle gel sizes were ranged from 30 to 120 mesh for this work.PPGs are sized in a millimeter or micrometer,which can absorb over a hundred times their weight in liquids.The gel strength was approximately 6500 Pa for a completely swollen PPG with 1 %(weight percentage) NaCl solution(brine).0.05 %,1 %,and 10 % NaCl solutions were used in experiments.Sandstone core permeability was measured before and after PPG treatments.The relationship between cumulative filtration volumes versus filtration times was determined.The results indicate that DQ gels of a particle size of 30–80 mesh did not damage the cores of a low permeability of 3–25 m D.The DQ gels of a smaller particle size ranging from 100 to 120 mesh damaged the core and a cake was formed on the core surface.The results also indicate that more damage occurred when a high load pressure(400 psi) was applied on the high permeability cores(290–310 m D).The penetration of the particle gelsinto the low permeable formations can be decreased by the best selection of gel types,particle sizes,and brine concentrations.展开更多
Seismic fluid identification works as an effective approach to characterize the fluid feature and distribution of the reservoir underground with seismic data. Rock physics which builds bridge between the elastic param...Seismic fluid identification works as an effective approach to characterize the fluid feature and distribution of the reservoir underground with seismic data. Rock physics which builds bridge between the elastic parameters and reservoir parameters sets the foundation of seismic fluid identification, which is also a hot topic on the study of quantitative characterization of oil/gas reservoirs. Study on seismic fluid identification driven by rock physics has proved to be rewarding in recognizing the fluid feature and distributed regularity of the oil/gas reservoirs. This paper summarizes the key scientific problems immersed in seismic fluid identification, and emphatically reviews the main progress of seismic fluid identification driven by rock physics domestic and overseas, as well as discusses the opportunities, challenges and future research direction related to seismic fluid identification. Theoretical study and practical application indicate that we should incorporate rock physics, numerical simulation, seismic data processing and seismic inversion together to enhance the precision of seismic fluid identification.展开更多
基金supported by the National Natural Science Foundation of China (Grant 41272344)the National Basic Research Program (973) of China (Grant 2014CB046905)+3 种基金the Natural Science Foundation of Jiangsu Province of China (Grant BK2012568)the Team Project Funded by 2014 Jiangsu Innovation and Entrepreneurship Programthe Fundamental Research Funds for the Central Universities (China University of Mining and Technology) (Grants 2014YC10 and 2014XT03)Outstanding Innovation Team Project in China University of Mining and Technology (Grant 2014QN002)
文摘The seepage evolution characteristic of brittle rock materials is very significant for the stability and safety of rock engineering. In this research, a series of conventional triaxial compression and gas seepage tests were carded out on sandstone specimens with a rock mechanics servo-controlled testing system. Based on the experimental results, the relationship between permeability and deformation is firstly analyzed in detail. The results show that the permeabilityaxial strain curve can be divided into the following five phases: the phase of micro-defects closure, the phase of linear elastic deformation, the phase of nonlinear deformation, the phase of post-peak stress softening and the phase of residual strength. The seepage evolution characteristic is also closely correlated with the volumetric deformation according to the relationship between permeability and volumetric strain. It is found that the gas seepage pressure has a great effect on the permeability evolution, i.e. permeability coefficients increase with increasing gas seepage pressures. Finally, the influence of gas seepage pressures on the failure behavior of brittle sandstone specimens is discussed.
基金the Research Partnership to Secure Energy for America (RPSEA) for its financial support for this work
文摘In mature reservoirs,the success of preformed particle gel(PPG) treatment rests primarily on the ability of the PPG to reduce and/or plug the high permeable formations,but not damage the low permeable formations.Static test models(filtration test model and pressure test model)were used to determine the effect of PPG on low permeable formations.This work used a strong preformed particle gel,Daqing(DQ) gel made by a Chinese company.The particle gel sizes were ranged from 30 to 120 mesh for this work.PPGs are sized in a millimeter or micrometer,which can absorb over a hundred times their weight in liquids.The gel strength was approximately 6500 Pa for a completely swollen PPG with 1 %(weight percentage) NaCl solution(brine).0.05 %,1 %,and 10 % NaCl solutions were used in experiments.Sandstone core permeability was measured before and after PPG treatments.The relationship between cumulative filtration volumes versus filtration times was determined.The results indicate that DQ gels of a particle size of 30–80 mesh did not damage the cores of a low permeability of 3–25 m D.The DQ gels of a smaller particle size ranging from 100 to 120 mesh damaged the core and a cake was formed on the core surface.The results also indicate that more damage occurred when a high load pressure(400 psi) was applied on the high permeability cores(290–310 m D).The penetration of the particle gelsinto the low permeable formations can be decreased by the best selection of gel types,particle sizes,and brine concentrations.
基金supported by the National Basic Research Program of China(Grant No.2013CB228604)the National Grand Project for Science and Technology(Grant Nos.2011ZX05030-004-002,2011ZX05019-003,2011ZX05006-002)SINOPEC Key Laboratory of Geophysics+2 种基金Science Foundation for Post-doctoral Scientists of ChinaScience Foundation for Post-doctoral Scientists of Shandongthe Western Australian Energy Research Alliance(WA:ERA)
文摘Seismic fluid identification works as an effective approach to characterize the fluid feature and distribution of the reservoir underground with seismic data. Rock physics which builds bridge between the elastic parameters and reservoir parameters sets the foundation of seismic fluid identification, which is also a hot topic on the study of quantitative characterization of oil/gas reservoirs. Study on seismic fluid identification driven by rock physics has proved to be rewarding in recognizing the fluid feature and distributed regularity of the oil/gas reservoirs. This paper summarizes the key scientific problems immersed in seismic fluid identification, and emphatically reviews the main progress of seismic fluid identification driven by rock physics domestic and overseas, as well as discusses the opportunities, challenges and future research direction related to seismic fluid identification. Theoretical study and practical application indicate that we should incorporate rock physics, numerical simulation, seismic data processing and seismic inversion together to enhance the precision of seismic fluid identification.