This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of...This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum.展开更多
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons...Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments.展开更多
Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabin...Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land,China.We collected soil samples from five depth layers(0-20,20-40,40-60,60-80,and 80-100 cm)in the S.vulgaris plantation plots across four plantation ages(4,7,10,and 16 years)in November 2019,and assessed soil physical(soil bulk density,soil porosity,and soil particle size)and chemical(soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),available potassium(AK),cation-exchange capacity(CEC),salinity,p H,and C/N ratio)properties.The results indicated that the soil predominantly consisted of sand particles(94.27%-99.67%),with the remainder being silt and clay.As plantation age increased,silt and very fine sand contents progressively rose.After 16 years of planting,there was a marked reduction in the mean soil particle size.The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement.Significant positive correlations were observed for the clay,silt,and very fine sand(mean diameter of 0.000-0.100 mm)with SOC,AK,and p H.In contrast,fine sand and medium sand(mean diameter of 0.100-0.500 mm)showed significant negative correlations with these indicators.Our findings ascertain that the plantation of S.vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation,and needs 16 years to improve soil physical and chemical properties.Importantly,these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas.This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China.展开更多
The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbe...The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbelly improvised explosive device(IEDs),which must be buried in water-saturated sandy gravel.The use of sandy gravel has some drawbacks,for instance reproducibility,time consumption,and cost.This paper focuses on the investigation of four alternatives to sandy gravel,which could produce similar specific and cumulative impulses:a concrete pot filled with water,a concrete pot filled with quartz sand,a steel pot without filling and a concrete pot filled with glass spheres(diameter 200μm—300μm)and different water contents.The impulses are measured with a ring technology developed at the Fraunhofer EMI.A numerical soil model based on the work of Marrs,2014 and Fi serov a,2006 and considering the soil moisture was used to simulate the experiments with glass spheres at different water contents,showing much better agreement with the experiments than the classical Laine&Sandvik model,even for high saturation levels.These results can be used to create new test conditions at original scale that are more cost-effective,more reproducible and simpler to manage in comparison to the current tests carried out with STANAG sandy gravel.展开更多
During the operation of sandy railways, the challenge posed by wind-blown sand is a persistent issue. An in-depth study on the influence of wind-blown sand content on the macroscopic and microscopic mechanical propert...During the operation of sandy railways, the challenge posed by wind-blown sand is a persistent issue. An in-depth study on the influence of wind-blown sand content on the macroscopic and microscopic mechanical properties of the ballast bed is of great significance for understanding the potential problems of sandy railways and proposing reasonable and adequate maintenance and repair strategies. Building upon existing research, this study proposes a new assessment indicator for sand content. Utilizing the discrete element method(DEM) and fully considering the complex interactions between ballast and sand particles, three-dimensional(3D) multi-scale analysis models of sandy ballast beds with different wind-blown sand contents are established and validated through field experiments. The effects of varying wind-blown sand content on the microscopic contact distribution and macroscopic mechanical behavior(such as resistance and support stiffness) of ballast beds are carefully analyzed. The results show that with the increase in sand content, the average contact force and coordination number between ballast particles gradually decrease, and the disparity in contact forces between different layers of the ballast bed diminishes. The longitudinal and lateral resistance of the ballast bed initially decreases and then increases, with a critical point at 10% sand content. At 15% sand content, the lateral resistance is mainly shared by the ballast shoulder. The longitudinal resistance sharing ratio is always the largest on the sleeper side, followed by that at the sleeper bottom, and the smallest on the ballast shoulder. When the sand content exceeds 10%, the contribution of sand particles to stiffness significantly increases, leading to an accelerated growth rate of the overall support stiffness of the ballast bed, which is highly detrimental to the long-term service performance of the ballast bed. In conclusion, it is recommended that maintenance and repair operations should be promptly conducted when the sand content of the ballast bed reaches or exceeds 10%.展开更多
Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf lu...Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf luence this key parameter in the Mu Us sandy land(MUSL).Quantifying the impact of changes in land use in the Mu Us sandy land on K_(s) will provide a key foundation for understanding the regional water cycle,but will also provide a scientific basis for the governance of the MUSL.Materials and methods In this study,we determined K_(s) and the basic physical and chemical properties of soil(i.e.,organic matter,bulk density,and soil particle composition)within the first 100 cm layer of four different land use patterns(farmland,tree,shrub,and grassland)in the MUSL.The vertical variation of K_(s) and the factors that influence this key parameter were analyzed and a transfer function for estimating K_(s) was established based on a multiple stepwise regression model.Results The K_(s) of farmland,tree,and shrub increased gradually with soil depth while that of grassland remained unchanged.The K_(s) of the four patterns of land use were moderately variable;mean K_(s)values were ranked as follows:grassland(1.38 mm·min^(-1))<tree(1.76 mm·min^(-1))<farmland(1.82 mm·min^(-1))<shrub(3.30 mm·min^(-1)).The correlation between K_(s) and organic matter,bulk density,and soil particle composition,varied across different land use patterns.A multiple stepwise regression model showed that silt,coarse sand,bulk density,and organic matter,were key predictive factors for the K_(s) of farmland,tree,shrub,and grassland,in the MUSL.Discussion The vertical distribution trend for K_(s) in farmland is known to be predominantly influenced by cultivation,fertilization,and other factors.The general aim is to improve the water-holding capacity of shallow soil on farmland(0-30 cm in depth)to conserve water and nutrients;research has shown that the K_(s) of farmland increases with soil depth.The root growth of tree and shrub in sandy land exerts mechanical force on the soil due to biophysical processes involving rhizospheres,thus leading to a significant change in K_(s).We found that shallow high-density fine roots increased the volume of soil pores and eliminated large pores,thus resulting in a reduction in shallow K_(s).Therefore,the K_(s) of tree and shrub increased with soil depth.Analysis also showed that the K_(s) of grassland did not change significantly and exhibited the lowest mean value when compared to other land use patterns.This finding was predominantly due to the shallow root system of grasslands and because this land use pattern is not subject to human activities such as cultivation and fertilization;consequently,there was no significant change in K_(s) with depth;grassland also had the lowest mean K_(s).We also established a transfer function for K_(s) for different land use patterns in the MUSL.However,the predictive factors for K_(s) in different land use patterns are known to be affected by soil cultivation methods,vegetation restoration modes,the distribution of soil moisture,and other factors,thus resulting in key differences.Therefore,when using the transfer function to predict K_(s) in other areas,it will be necessary to perform parameter calibration and further verification.Conclusions In the MUSL,the K_(s) of farmland,tree,and shrub gradually increased with soil depth;however,the K_(s) of grassland showed no significant variation in terms of vertical distribution.The mean K_(s) values of different land use patterns were ranked as follows:shrub>farmland>tree>grassland;all land use patterns showed moderate levels of variability.The K_(s) for different land use patterns exhibited differing degrees of correlation with soil physical and chemical properties;of these,clay,silt,sand,bulk density,and organic matter,were identified as important variables for predicting K_(s) in farmland,tree,shrub,and grassland,respectively.Recommendations and perspectives In this study,we used a stepwise multiple regression model to establish a transfer function prediction model for K_(s) for different land use patterns;this model possessed high estimation accuracy.The ability to predict K_(s) in the MUSL is very important in terms of the conservation of water and nutrients.展开更多
Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in 揟hree North?regions (North, northwest and northeast of Chi...Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in 揟hree North?regions (North, northwest and northeast of China), but many problems occurred in the earliest Mongolian pine plantations in Zhanggutai, Zhangwu County, Liaoning Province (ZZL). In order to clarify the reason, comprehensive investigations were carried out on differences in structure characteristics, growth processes and ecological factors between artificial stands (the first plantation established in ZZL in 1950s) and natural stands (the origin forests of the tree species in Honghuaerji, Inner Mongolia) on sandy land. The results showed that variation of diameter-class distributions in artificial stands and natural stands could be described by Weibull and Normal distribution models, respectively. Chapman-Richards growth model was employed to reconstruct the growth process of Mongolian pine based on the data from field investigation and stem analysis. The ages of maximum of relative growth rate and average growth rate of DBH, height, and volume of planted trees were 11, 22 years, 8, 15 years and 35, 59 years earlier than those of natural stand trees, respectively. In respect of the incremental acceleration of volume, the artificial and natural stands reached their maximum values at 14 years and 33 years respectively. The quantitative maturity ages of artificial stands and natural stands were 43 years and 102 years respectively. It was concluded that the life span of the Mongolian pine trees in natural stands was about 60 years longer than those in artificial stands. The differences mentioned above between artificial and natural Mongolian pine forests on sandy land were partially attributed to the drastic variations of ecological conditions such as latitude, temperature, precipitation, evaporation and height above sea level. Human beings' disturbances and higher density in plantation forest may be ascribed as additional reasons. Those results may be potentially useful for the management and afforestation of Mongolian pine plantations on sandy land in arid and semi-arid areas.展开更多
The concentrations of the foliar and surface soil nutrients and the variation with species and stand age were studied inPinus spp. plantations in Zhanggutai area, northeast China. The results showed that the total N, ...The concentrations of the foliar and surface soil nutrients and the variation with species and stand age were studied inPinus spp. plantations in Zhanggutai area, northeast China. The results showed that the total N, total P and C: N ratio of the soil inP. sylvestris var.mongolica stands were significantly higher in comparison with those inP. tabulaeformis andP. densiflora stands. ForP. sylvestris var.mongolica, the foliar P concentration appeared to decrease with age, and the foliar N and K concentrations did not show a consistent change with age. As for the different tree species of the similar age, the foliar N and P concentrations were significantly different (p<0.05), being withP. sylvestris var.mongolica>P. densiflora>P. tabulaeformis. The foliar N: P ratio ofP. densiflora significantly was higher thanP. sylvestris var.mongolica andP. tabulaeformis, while the foliar K was no obvious difference between the three tree species. There were significant correlation (p<0.05) between soil total N and P, soil organic matter and total P, foliar N and P, but it did not show significant correlations between soil and foliar nutrient concentrations, which might attribute to the excessive litter raking, overgrazing and low soil moisture in this area. Based on the foliar N: P ratio, we introduced a combination threshold index of N: P ratio with their absolute foliar nutrient concentrations to determine the possible limiting nutrient. According to the critical N: P ratio and their absolute foliar N, P concentrations, theP. sylvestris var.mongolica stands showed a decreased N limitation degree with age, theP. densiflora stands showed unlimited by N and P in the whole, and theP. tabulaeformis stands showed co-limited by N and P. No significant difference in soil nutrient concentrations of the surface soils was found between 45, 29, 20-yr-oldPinus sylvestris var.mongolica plantation stands. Keywords coniferous trees - foliar nutrient concentration - limiting nutrients - N - P ratio - Zhanggutai sandy land CLC number S718.55 Document code A Article ID 1007-662X(2004)01-0011-08 Foundation item: This research was supported by Key Knowledge Innovation Project (KZCX3-SW-418) of Chinese Academy of Sciences.Biography: CHEN Guang-sheng (1978-), male, master candidate in Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. ChinaResponsible editor: Song Funan展开更多
The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the ...The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.展开更多
Calamagrostis epigejos (L.) Roth. is a perennial grass with slender and long rhizome segments between interconnected neighbor ramets. To investigate the phenotypic plasticity in response to the heterogeneous soil wate...Calamagrostis epigejos (L.) Roth. is a perennial grass with slender and long rhizome segments between interconnected neighbor ramets. To investigate the phenotypic plasticity in response to the heterogeneous soil water supply, ramet pairs of the species were subjected to heterogeneous water supply by which either mother ramets or daughter ramets were in high or low soil water supply, respectively, in the Maowusu (Mu Us) Sandy Land of Nei Mongol. The results showed that the phenotypic characteristics of the individual ramets of C epigejos were greatly influenced by the heterogeneous water supply. The ramets treated with high water supply significantly produced more new rhizomes and more offspring (ramets), and accumulated more shoot biomass, and allocated more biomass to their shoots than those treated with low water supply. In comparison with the daughter ramets in homogeneous soil water supply, phenotypic characteristics, in terms of new rhizome growth, the production of new offspring, and the biomass allocation pattern, of the daughter ramets within the pairs of the species were not significantly changed, no matter that high or low soil water supply to mother ramets. The phenotypic responses of mother ramets to soil water supply were similar to those of daughter ramets. From these results, it is inferred that the interconnected ramets of C epigejos response phenotypically to their local soil water rather than to the soil water experienced by the interconnected ramets. The interconnected ramets of C epigejos might be independent of each other in water relationship, although they are physically interconnected with rhizome segments. The physiological independence of interconnected ramets might facilitate the risk spreading and thus enhance the genet survivorship under the frequent drought stresses in Mu Us Sandland.展开更多
[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered...[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered by Artemisia ordosica, Salix cheilophila, Hedysarum scoparium, Populus simonii and Amorpha fruticosa, all of which were planted artificially at the same year were measured in the present study, using a bare soil as the control. [Result] Artificial vegetation improved the soil physicochemical properties by different extents in the lands covered by different plants. The soil physicochemical properties such as bulk density under A. Fruticosa and H. Scoparium were improved greatly. The frequency distribution of soil particle size under artificial vegetations exhibited a bimodal curve. The average soil particle size under A. fruticosa was the smallest, and the soil was very poorly sorted. The soil nutrients in the sandy land were not significantly improved by artificial vegeta- tion. [Conclusion] Artificial vegetation has a certain impact on soil properties in sandy land, as it greatly improves the soil physical properties but not the chemical properties.展开更多
A new species, Spirulina (Arthrospira) bayannurensis B. Sh. Li et C. Qiao sp. nov. was firstly collected from the Lake of Bayannur, Mu Us Sandy Land, Inner Mongolia Autonomous Region in China on April 30, 199...A new species, Spirulina (Arthrospira) bayannurensis B. Sh. Li et C. Qiao sp. nov. was firstly collected from the Lake of Bayannur, Mu Us Sandy Land, Inner Mongolia Autonomous Region in China on April 30, 1996 The morphological characteristics of the new species are described and illustrated by light micrographs, scanning and transmission electron micrographs. The type specimen of this new species is kept in Herbarium of Inner Mongolia Agricultural University.展开更多
In order to explore effects of vegetation on nutrients in soils, nutrients characters of soils under natural grass, closed grass, abandoned lands, forest lands returned from farmlands and fixed sandy areas in Mu Us De...In order to explore effects of vegetation on nutrients in soils, nutrients characters of soils under natural grass, closed grass, abandoned lands, forest lands returned from farmlands and fixed sandy areas in Mu Us Desert were researched. The results indicated that vegetations in varied types have different effects on organic matter, total N, available N and available P, among which the first three were all higher in soils under closed grass, forest lands returned from farmlands, and fixed sandy lands than those under natural grass and abandoned lands. This was totally contrary with contents of available P in soil. In addition, nutrients in soils at 0-20 cm were more influenced by vegetation, than those at 20-60 cm, and Caragana Korshinskii proved better in improving nutrients in soils.展开更多
Sandy forest-steppe ecotone in Baiyinaobao Natural Reserve of Inner Mongolia Autonomous Region of China is one of the special landscape types in forest-steppe vegetation zone in China. Vegetation landscape types, land...Sandy forest-steppe ecotone in Baiyinaobao Natural Reserve of Inner Mongolia Autonomous Region of China is one of the special landscape types in forest-steppe vegetation zone in China. Vegetation landscape types, landscape patches, and patch size were measured by the field investigation, forest photograph, and airscape. The structure of landscape patches in sandy forest-steppe ecotone, including composition structure, and size structure, was studied and the dynamics and transformation of landscape patches were analyzed. The data obtained in this study could provide theoretical basis for the research on vegetation landscape in forest-steppe ecotones and other vegetation types.展开更多
[Objective] This research aimed to explore the existing forms of ammonium nitrogen adsorbed in a sandy soil with different particle sizes by extraction experiments and provide references for investigating the transpor...[Objective] This research aimed to explore the existing forms of ammonium nitrogen adsorbed in a sandy soil with different particle sizes by extraction experiments and provide references for investigating the transport and transformation of the ammonium in the vadose zone.[Method] Sandy soil sample was collected from a landfill and sieved into coarse sand and fine sand.The three kinds of samples were soaked in NH4Cl solution with different initial concentrations,respectively.Then,ammonium adsorbed in soil samples were extracted by three kinds of extraction agents with different extraction capacity,including water,KCl and CaCl2.[Result] The order of extraction capacity of different extraction agents was:water KCl CaCl2;when the concentration of ammonium was low in solution,the ammonium preferentially adsorbed in the exchangeable positions of minerals and mainly existed in the form of exchangeable ammonium;with the increase of concentration,ammonium entered inside the 2:1 clay minerals with enough driving force of the concentration differences and existed in the form of fixed ammonium;little fixed ammonium was observed in coarse sand samples,which was mainly existed in 2:1 clay minerals with strong extraction capacity.[Conclusion] The existing forms of ammonium were closely related to the mineral compositions in soil and the initial concentrations of ammonium.展开更多
This paper analyzed the water-retention mechanism of feldspathic sandstone (fine-(〈 1 mm diam.) and gravel-sized (2-3 cm diam.) in Mu Us Sandy Land, Northwest China. The objective of this study is to study the e...This paper analyzed the water-retention mechanism of feldspathic sandstone (fine-(〈 1 mm diam.) and gravel-sized (2-3 cm diam.) in Mu Us Sandy Land, Northwest China. The objective of this study is to study the effect of feldspathic sandstone amendment on water retention in sandy land. The results showed that as the proportion of fine feldspathic sandstone in the sandy land soil increased, the soil texture changed from sand to silt loam, the capillary po- rosity gradually increased from 26.3% to 44.9%, and the soil saturated hydraulic conductivity decreased from 7.10 ram/rain to 0.07 mm/min. Feldspathic sandstone gravel formed micro-reservoirs in the sandy land soil, playing the role of a 'water absorbent' and 'water retaining agent' in sandy land. Amendment with feldspathic sandstone can increase water retention in the arable layer of sandy land by 67%. This study provides a theoretical basis for the amelioration of sandy land on a large scale. It can be concluded that amendment with feldspathic sandstone can improve the physical properties of sandy land soil and increase soil water retention.展开更多
Sandy debris flow is a new genetic type of sand bodies,which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the 'Bouma S...Sandy debris flow is a new genetic type of sand bodies,which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the 'Bouma Sequence' and 'turbidite fan' deep-water sedimentary theories to some point. Oil exploration researchers are highly concerned with sandy debris flows for its key role in controlling oil and gas accumulation processes.In this article,by applying sandy debris flows theory and combining a lot work of core,outcrop observation and analysis plus seismic profile interpretation,we recognized three types of sedimentary gravity flows that are sandy debris flows,classic turbidites and slumping rocks in chang-6 member of Yanchang Formation in the deep-water area of central Ordos Basin.Among the three types,the sandy debris flows are the most prominent and possesses the best oil bearing conditions.On the contrary,the classic turbidites formed by turbidity currents are limited in distribution;therefore,previous Yanchang Formation deep-water sedimentary studies have exaggerated the importance of turbidite currents deposition.Further study showed that the area distribution of deep water gravity flow sand bodies in Yanchang Formation were controlled by the slope of the deep-water deposits and the flows had vast distribution,huge depth and prevalent advantages for oil forming,which make it one of the most favorable new areas for Ordos Basin prospecting.展开更多
Natural regeneration in Mongolian pine, Pinus sylvesttis var. mongolica, forest at Honghuaerji of China (the original of the natural Mongolian pine, forest on sandy land) was studied in 2004. The total mean values o...Natural regeneration in Mongolian pine, Pinus sylvesttis var. mongolica, forest at Honghuaerji of China (the original of the natural Mongolian pine, forest on sandy land) was studied in 2004. The total mean values of regeneration indexes were higher in mature stands (more than 80% individual stems were older than 50 years), the maximum of regeneration index reached 29 seedlings, m^ 2, with lowest values in the younger stand, e.g., in 32-year old and 43-year old stands. The stand age was an important factor determining the natural regeneration, which was the best in the older stands in this investigation (e.g. about 80-year old). The regeneration index seemed not to be closely in relation to canopy openness although Mongolian pine is a photophilic tree species. In each type of gaps, natural regeneration was very well. Regeneration indexes were satisfactory at the south and east edges in the circle gaps; and at the east edge of the narrow-square gaps. Results indicated that Mongolian pine, seedlings could endure shading understory, but it would not enter the canopy layer without gap or large disturbance, e.g., fire, wind/snow damage or clear cutting etc. These results may provide potentially references to the management and afforestation of Mongolian pine, plantations on sandy land in arid and semi-arid areas. Researches such as the comprehensive comparisons on regeneration, structure and ecological conditions and so on between natural Mongolian pine, forests and plantations should be conducted in the future.展开更多
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.51538001 and 51978019).
文摘This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum.
基金National Natural Science Foundation of China under Grant No.52278503。
文摘Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments.
基金funded by the National Natural Science Foundation of China(42171004)the Key Research and Development Program in Shaanxi Province,China(2021ZDLSF05-02)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0403)。
文摘Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land,China.We collected soil samples from five depth layers(0-20,20-40,40-60,60-80,and 80-100 cm)in the S.vulgaris plantation plots across four plantation ages(4,7,10,and 16 years)in November 2019,and assessed soil physical(soil bulk density,soil porosity,and soil particle size)and chemical(soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),available potassium(AK),cation-exchange capacity(CEC),salinity,p H,and C/N ratio)properties.The results indicated that the soil predominantly consisted of sand particles(94.27%-99.67%),with the remainder being silt and clay.As plantation age increased,silt and very fine sand contents progressively rose.After 16 years of planting,there was a marked reduction in the mean soil particle size.The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement.Significant positive correlations were observed for the clay,silt,and very fine sand(mean diameter of 0.000-0.100 mm)with SOC,AK,and p H.In contrast,fine sand and medium sand(mean diameter of 0.100-0.500 mm)showed significant negative correlations with these indicators.Our findings ascertain that the plantation of S.vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation,and needs 16 years to improve soil physical and chemical properties.Importantly,these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas.This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China.
基金Bundeswehr Technical Center for Weapons and Ammunition WTD-91 GF-440 in Meppen,Germany for funding this work。
文摘The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbelly improvised explosive device(IEDs),which must be buried in water-saturated sandy gravel.The use of sandy gravel has some drawbacks,for instance reproducibility,time consumption,and cost.This paper focuses on the investigation of four alternatives to sandy gravel,which could produce similar specific and cumulative impulses:a concrete pot filled with water,a concrete pot filled with quartz sand,a steel pot without filling and a concrete pot filled with glass spheres(diameter 200μm—300μm)and different water contents.The impulses are measured with a ring technology developed at the Fraunhofer EMI.A numerical soil model based on the work of Marrs,2014 and Fi serov a,2006 and considering the soil moisture was used to simulate the experiments with glass spheres at different water contents,showing much better agreement with the experiments than the classical Laine&Sandvik model,even for high saturation levels.These results can be used to create new test conditions at original scale that are more cost-effective,more reproducible and simpler to manage in comparison to the current tests carried out with STANAG sandy gravel.
基金supported by the National Natural Science Foundation of China (Grant No. 52372425)the Fundamental Research Funds for the Central Universities (Science and Technology Leading Talent Team Poject) Grant No. 2022JBXT010。
文摘During the operation of sandy railways, the challenge posed by wind-blown sand is a persistent issue. An in-depth study on the influence of wind-blown sand content on the macroscopic and microscopic mechanical properties of the ballast bed is of great significance for understanding the potential problems of sandy railways and proposing reasonable and adequate maintenance and repair strategies. Building upon existing research, this study proposes a new assessment indicator for sand content. Utilizing the discrete element method(DEM) and fully considering the complex interactions between ballast and sand particles, three-dimensional(3D) multi-scale analysis models of sandy ballast beds with different wind-blown sand contents are established and validated through field experiments. The effects of varying wind-blown sand content on the microscopic contact distribution and macroscopic mechanical behavior(such as resistance and support stiffness) of ballast beds are carefully analyzed. The results show that with the increase in sand content, the average contact force and coordination number between ballast particles gradually decrease, and the disparity in contact forces between different layers of the ballast bed diminishes. The longitudinal and lateral resistance of the ballast bed initially decreases and then increases, with a critical point at 10% sand content. At 15% sand content, the lateral resistance is mainly shared by the ballast shoulder. The longitudinal resistance sharing ratio is always the largest on the sleeper side, followed by that at the sleeper bottom, and the smallest on the ballast shoulder. When the sand content exceeds 10%, the contribution of sand particles to stiffness significantly increases, leading to an accelerated growth rate of the overall support stiffness of the ballast bed, which is highly detrimental to the long-term service performance of the ballast bed. In conclusion, it is recommended that maintenance and repair operations should be promptly conducted when the sand content of the ballast bed reaches or exceeds 10%.
文摘Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf luence this key parameter in the Mu Us sandy land(MUSL).Quantifying the impact of changes in land use in the Mu Us sandy land on K_(s) will provide a key foundation for understanding the regional water cycle,but will also provide a scientific basis for the governance of the MUSL.Materials and methods In this study,we determined K_(s) and the basic physical and chemical properties of soil(i.e.,organic matter,bulk density,and soil particle composition)within the first 100 cm layer of four different land use patterns(farmland,tree,shrub,and grassland)in the MUSL.The vertical variation of K_(s) and the factors that influence this key parameter were analyzed and a transfer function for estimating K_(s) was established based on a multiple stepwise regression model.Results The K_(s) of farmland,tree,and shrub increased gradually with soil depth while that of grassland remained unchanged.The K_(s) of the four patterns of land use were moderately variable;mean K_(s)values were ranked as follows:grassland(1.38 mm·min^(-1))<tree(1.76 mm·min^(-1))<farmland(1.82 mm·min^(-1))<shrub(3.30 mm·min^(-1)).The correlation between K_(s) and organic matter,bulk density,and soil particle composition,varied across different land use patterns.A multiple stepwise regression model showed that silt,coarse sand,bulk density,and organic matter,were key predictive factors for the K_(s) of farmland,tree,shrub,and grassland,in the MUSL.Discussion The vertical distribution trend for K_(s) in farmland is known to be predominantly influenced by cultivation,fertilization,and other factors.The general aim is to improve the water-holding capacity of shallow soil on farmland(0-30 cm in depth)to conserve water and nutrients;research has shown that the K_(s) of farmland increases with soil depth.The root growth of tree and shrub in sandy land exerts mechanical force on the soil due to biophysical processes involving rhizospheres,thus leading to a significant change in K_(s).We found that shallow high-density fine roots increased the volume of soil pores and eliminated large pores,thus resulting in a reduction in shallow K_(s).Therefore,the K_(s) of tree and shrub increased with soil depth.Analysis also showed that the K_(s) of grassland did not change significantly and exhibited the lowest mean value when compared to other land use patterns.This finding was predominantly due to the shallow root system of grasslands and because this land use pattern is not subject to human activities such as cultivation and fertilization;consequently,there was no significant change in K_(s) with depth;grassland also had the lowest mean K_(s).We also established a transfer function for K_(s) for different land use patterns in the MUSL.However,the predictive factors for K_(s) in different land use patterns are known to be affected by soil cultivation methods,vegetation restoration modes,the distribution of soil moisture,and other factors,thus resulting in key differences.Therefore,when using the transfer function to predict K_(s) in other areas,it will be necessary to perform parameter calibration and further verification.Conclusions In the MUSL,the K_(s) of farmland,tree,and shrub gradually increased with soil depth;however,the K_(s) of grassland showed no significant variation in terms of vertical distribution.The mean K_(s) values of different land use patterns were ranked as follows:shrub>farmland>tree>grassland;all land use patterns showed moderate levels of variability.The K_(s) for different land use patterns exhibited differing degrees of correlation with soil physical and chemical properties;of these,clay,silt,sand,bulk density,and organic matter,were identified as important variables for predicting K_(s) in farmland,tree,shrub,and grassland,respectively.Recommendations and perspectives In this study,we used a stepwise multiple regression model to establish a transfer function prediction model for K_(s) for different land use patterns;this model possessed high estimation accuracy.The ability to predict K_(s) in the MUSL is very important in terms of the conservation of water and nutrients.
基金The research was supported by innovation research project of Chinese Academy of Sciences (KZCX3-SW-418) and by Nature Science Foundation of Liaoning Province (20021006).
文摘Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in 揟hree North?regions (North, northwest and northeast of China), but many problems occurred in the earliest Mongolian pine plantations in Zhanggutai, Zhangwu County, Liaoning Province (ZZL). In order to clarify the reason, comprehensive investigations were carried out on differences in structure characteristics, growth processes and ecological factors between artificial stands (the first plantation established in ZZL in 1950s) and natural stands (the origin forests of the tree species in Honghuaerji, Inner Mongolia) on sandy land. The results showed that variation of diameter-class distributions in artificial stands and natural stands could be described by Weibull and Normal distribution models, respectively. Chapman-Richards growth model was employed to reconstruct the growth process of Mongolian pine based on the data from field investigation and stem analysis. The ages of maximum of relative growth rate and average growth rate of DBH, height, and volume of planted trees were 11, 22 years, 8, 15 years and 35, 59 years earlier than those of natural stand trees, respectively. In respect of the incremental acceleration of volume, the artificial and natural stands reached their maximum values at 14 years and 33 years respectively. The quantitative maturity ages of artificial stands and natural stands were 43 years and 102 years respectively. It was concluded that the life span of the Mongolian pine trees in natural stands was about 60 years longer than those in artificial stands. The differences mentioned above between artificial and natural Mongolian pine forests on sandy land were partially attributed to the drastic variations of ecological conditions such as latitude, temperature, precipitation, evaporation and height above sea level. Human beings' disturbances and higher density in plantation forest may be ascribed as additional reasons. Those results may be potentially useful for the management and afforestation of Mongolian pine plantations on sandy land in arid and semi-arid areas.
基金Key Knowledge Innovation Project (KZCX3-SW-418) of Chinese Academy of Sciences.
文摘The concentrations of the foliar and surface soil nutrients and the variation with species and stand age were studied inPinus spp. plantations in Zhanggutai area, northeast China. The results showed that the total N, total P and C: N ratio of the soil inP. sylvestris var.mongolica stands were significantly higher in comparison with those inP. tabulaeformis andP. densiflora stands. ForP. sylvestris var.mongolica, the foliar P concentration appeared to decrease with age, and the foliar N and K concentrations did not show a consistent change with age. As for the different tree species of the similar age, the foliar N and P concentrations were significantly different (p<0.05), being withP. sylvestris var.mongolica>P. densiflora>P. tabulaeformis. The foliar N: P ratio ofP. densiflora significantly was higher thanP. sylvestris var.mongolica andP. tabulaeformis, while the foliar K was no obvious difference between the three tree species. There were significant correlation (p<0.05) between soil total N and P, soil organic matter and total P, foliar N and P, but it did not show significant correlations between soil and foliar nutrient concentrations, which might attribute to the excessive litter raking, overgrazing and low soil moisture in this area. Based on the foliar N: P ratio, we introduced a combination threshold index of N: P ratio with their absolute foliar nutrient concentrations to determine the possible limiting nutrient. According to the critical N: P ratio and their absolute foliar N, P concentrations, theP. sylvestris var.mongolica stands showed a decreased N limitation degree with age, theP. densiflora stands showed unlimited by N and P in the whole, and theP. tabulaeformis stands showed co-limited by N and P. No significant difference in soil nutrient concentrations of the surface soils was found between 45, 29, 20-yr-oldPinus sylvestris var.mongolica plantation stands. Keywords coniferous trees - foliar nutrient concentration - limiting nutrients - N - P ratio - Zhanggutai sandy land CLC number S718.55 Document code A Article ID 1007-662X(2004)01-0011-08 Foundation item: This research was supported by Key Knowledge Innovation Project (KZCX3-SW-418) of Chinese Academy of Sciences.Biography: CHEN Guang-sheng (1978-), male, master candidate in Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. ChinaResponsible editor: Song Funan
基金This research was supported by Key Knowledge Innova-tion Project (SCXZD0102) of Institute of Applied Ecology Chinese Academy of Sciences and sponsored by the Science and Technology Department of Inner Mongolia Autonomic Region,P. R. China (2001010)
文摘The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.
文摘Calamagrostis epigejos (L.) Roth. is a perennial grass with slender and long rhizome segments between interconnected neighbor ramets. To investigate the phenotypic plasticity in response to the heterogeneous soil water supply, ramet pairs of the species were subjected to heterogeneous water supply by which either mother ramets or daughter ramets were in high or low soil water supply, respectively, in the Maowusu (Mu Us) Sandy Land of Nei Mongol. The results showed that the phenotypic characteristics of the individual ramets of C epigejos were greatly influenced by the heterogeneous water supply. The ramets treated with high water supply significantly produced more new rhizomes and more offspring (ramets), and accumulated more shoot biomass, and allocated more biomass to their shoots than those treated with low water supply. In comparison with the daughter ramets in homogeneous soil water supply, phenotypic characteristics, in terms of new rhizome growth, the production of new offspring, and the biomass allocation pattern, of the daughter ramets within the pairs of the species were not significantly changed, no matter that high or low soil water supply to mother ramets. The phenotypic responses of mother ramets to soil water supply were similar to those of daughter ramets. From these results, it is inferred that the interconnected ramets of C epigejos response phenotypically to their local soil water rather than to the soil water experienced by the interconnected ramets. The interconnected ramets of C epigejos might be independent of each other in water relationship, although they are physically interconnected with rhizome segments. The physiological independence of interconnected ramets might facilitate the risk spreading and thus enhance the genet survivorship under the frequent drought stresses in Mu Us Sandland.
基金Supported by National Key Technology Research and Development Program during the 12th Five-year Plan Period(2012BAD16B0202)Special Fund for Forest Scientific Research in the Public Interest(201004018)~~
文摘[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered by Artemisia ordosica, Salix cheilophila, Hedysarum scoparium, Populus simonii and Amorpha fruticosa, all of which were planted artificially at the same year were measured in the present study, using a bare soil as the control. [Result] Artificial vegetation improved the soil physicochemical properties by different extents in the lands covered by different plants. The soil physicochemical properties such as bulk density under A. Fruticosa and H. Scoparium were improved greatly. The frequency distribution of soil particle size under artificial vegetations exhibited a bimodal curve. The average soil particle size under A. fruticosa was the smallest, and the soil was very poorly sorted. The soil nutrients in the sandy land were not significantly improved by artificial vegeta- tion. [Conclusion] Artificial vegetation has a certain impact on soil properties in sandy land, as it greatly improves the soil physical properties but not the chemical properties.
文摘A new species, Spirulina (Arthrospira) bayannurensis B. Sh. Li et C. Qiao sp. nov. was firstly collected from the Lake of Bayannur, Mu Us Sandy Land, Inner Mongolia Autonomous Region in China on April 30, 1996 The morphological characteristics of the new species are described and illustrated by light micrographs, scanning and transmission electron micrographs. The type specimen of this new species is kept in Herbarium of Inner Mongolia Agricultural University.
基金Supported by Projects in the National Science&Technology Pillar Program during the Twelfth Five-Year Plan Period(2012BAD16B0202)National Natural Science Foundation of China(41171002)Scientific Research Foundation of Beijing Normal University~~
文摘In order to explore effects of vegetation on nutrients in soils, nutrients characters of soils under natural grass, closed grass, abandoned lands, forest lands returned from farmlands and fixed sandy areas in Mu Us Desert were researched. The results indicated that vegetations in varied types have different effects on organic matter, total N, available N and available P, among which the first three were all higher in soils under closed grass, forest lands returned from farmlands, and fixed sandy lands than those under natural grass and abandoned lands. This was totally contrary with contents of available P in soil. In addition, nutrients in soils at 0-20 cm were more influenced by vegetation, than those at 20-60 cm, and Caragana Korshinskii proved better in improving nutrients in soils.
基金The paper is supported by National Nature Science Foundation of China (grant numbers: 39900019, and 30070129).
文摘Sandy forest-steppe ecotone in Baiyinaobao Natural Reserve of Inner Mongolia Autonomous Region of China is one of the special landscape types in forest-steppe vegetation zone in China. Vegetation landscape types, landscape patches, and patch size were measured by the field investigation, forest photograph, and airscape. The structure of landscape patches in sandy forest-steppe ecotone, including composition structure, and size structure, was studied and the dynamics and transformation of landscape patches were analyzed. The data obtained in this study could provide theoretical basis for the research on vegetation landscape in forest-steppe ecotones and other vegetation types.
基金Supported by Major Project of Water Pollution Control and Treatment(2009ZX07424-002)~~
文摘[Objective] This research aimed to explore the existing forms of ammonium nitrogen adsorbed in a sandy soil with different particle sizes by extraction experiments and provide references for investigating the transport and transformation of the ammonium in the vadose zone.[Method] Sandy soil sample was collected from a landfill and sieved into coarse sand and fine sand.The three kinds of samples were soaked in NH4Cl solution with different initial concentrations,respectively.Then,ammonium adsorbed in soil samples were extracted by three kinds of extraction agents with different extraction capacity,including water,KCl and CaCl2.[Result] The order of extraction capacity of different extraction agents was:water KCl CaCl2;when the concentration of ammonium was low in solution,the ammonium preferentially adsorbed in the exchangeable positions of minerals and mainly existed in the form of exchangeable ammonium;with the increase of concentration,ammonium entered inside the 2:1 clay minerals with enough driving force of the concentration differences and existed in the form of fixed ammonium;little fixed ammonium was observed in coarse sand samples,which was mainly existed in 2:1 clay minerals with strong extraction capacity.[Conclusion] The existing forms of ammonium were closely related to the mineral compositions in soil and the initial concentrations of ammonium.
基金Under the auspices of Key Direction Program of Chinese Academy of Science(No.KZCX2-YW-Q06-03)MajorState Basic Research Development Program of China(No.2009CB421103)+1 种基金National Natural Science Foundation of China(No.41001050)Major Science and Technology Program for Water Pollution Control and Treatment(No.2012ZX07201004)
文摘This paper analyzed the water-retention mechanism of feldspathic sandstone (fine-(〈 1 mm diam.) and gravel-sized (2-3 cm diam.) in Mu Us Sandy Land, Northwest China. The objective of this study is to study the effect of feldspathic sandstone amendment on water retention in sandy land. The results showed that as the proportion of fine feldspathic sandstone in the sandy land soil increased, the soil texture changed from sand to silt loam, the capillary po- rosity gradually increased from 26.3% to 44.9%, and the soil saturated hydraulic conductivity decreased from 7.10 ram/rain to 0.07 mm/min. Feldspathic sandstone gravel formed micro-reservoirs in the sandy land soil, playing the role of a 'water absorbent' and 'water retaining agent' in sandy land. Amendment with feldspathic sandstone can increase water retention in the arable layer of sandy land by 67%. This study provides a theoretical basis for the amelioration of sandy land on a large scale. It can be concluded that amendment with feldspathic sandstone can improve the physical properties of sandy land soil and increase soil water retention.
文摘Sandy debris flow is a new genetic type of sand bodies,which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the 'Bouma Sequence' and 'turbidite fan' deep-water sedimentary theories to some point. Oil exploration researchers are highly concerned with sandy debris flows for its key role in controlling oil and gas accumulation processes.In this article,by applying sandy debris flows theory and combining a lot work of core,outcrop observation and analysis plus seismic profile interpretation,we recognized three types of sedimentary gravity flows that are sandy debris flows,classic turbidites and slumping rocks in chang-6 member of Yanchang Formation in the deep-water area of central Ordos Basin.Among the three types,the sandy debris flows are the most prominent and possesses the best oil bearing conditions.On the contrary,the classic turbidites formed by turbidity currents are limited in distribution;therefore,previous Yanchang Formation deep-water sedimentary studies have exaggerated the importance of turbidite currents deposition.Further study showed that the area distribution of deep water gravity flow sand bodies in Yanchang Formation were controlled by the slope of the deep-water deposits and the flows had vast distribution,huge depth and prevalent advantages for oil forming,which make it one of the most favorable new areas for Ordos Basin prospecting.
基金The research was supported by innovation research project of Chinese Academy of Sciences (KZCX3-SW-418), the 100-Young-Researcher-Project of Chinese Academy of Sciences, and by Nature Science Foundation of Liaoning Province (20021006). Acknowledgements We thank Professor Hexin Wang (Dalian University, China), Dr. Professor Zeng Dehui, and the graduate students in research group of Ecology and Management of Secondary Forest (Institute of Applied Ecology, Chinese Academy of Sciences) for their valuable discussion. We are grateful to Mr. Tao Yang (Institute of Applied Ecology, Chinese Academy of Sciences) for his field work. We also thank Dr. Professor Qingcheng Wang (Northeast Forestry University, China), Mr. Menqi Tu and Mr. Yuxiang Ge (Honghuaerji Forestry Bureau, Inner Mongolia, Hulunbeier, China) for providing the convenience during the field investigation.
文摘Natural regeneration in Mongolian pine, Pinus sylvesttis var. mongolica, forest at Honghuaerji of China (the original of the natural Mongolian pine, forest on sandy land) was studied in 2004. The total mean values of regeneration indexes were higher in mature stands (more than 80% individual stems were older than 50 years), the maximum of regeneration index reached 29 seedlings, m^ 2, with lowest values in the younger stand, e.g., in 32-year old and 43-year old stands. The stand age was an important factor determining the natural regeneration, which was the best in the older stands in this investigation (e.g. about 80-year old). The regeneration index seemed not to be closely in relation to canopy openness although Mongolian pine is a photophilic tree species. In each type of gaps, natural regeneration was very well. Regeneration indexes were satisfactory at the south and east edges in the circle gaps; and at the east edge of the narrow-square gaps. Results indicated that Mongolian pine, seedlings could endure shading understory, but it would not enter the canopy layer without gap or large disturbance, e.g., fire, wind/snow damage or clear cutting etc. These results may provide potentially references to the management and afforestation of Mongolian pine, plantations on sandy land in arid and semi-arid areas. Researches such as the comprehensive comparisons on regeneration, structure and ecological conditions and so on between natural Mongolian pine, forests and plantations should be conducted in the future.