Objective To observe the effects of combined treatment with sansanmycin and macrolides on Pseudomonas aeruginosa and formation of biofilm. Methods Micro-dilution method was used to determine the minimal inhibitory con...Objective To observe the effects of combined treatment with sansanmycin and macrolides on Pseudomonas aeruginosa and formation of biofilm. Methods Micro-dilution method was used to determine the minimal inhibitory concentrations (MICs) of sansanmycin, gentamycin, carbenicillin, polymyxin B, roxithromycin, piperacillin, and tazobactam. PAl and PA27853 biofilms were observed under optical microscope after staining and under SEM after treatment with sansanmycin at different dosages and combined treatment with sansanmycin and roxithromycin. Viable bacteria in PAl and PA27853 biofilms were counted after treatment with sansanmycin at different dosages or combined treatment with sansanmycin and roxithromycin. Results The MIC of sansanmycin was lower than that of gentamycin and polymyxin B, but was higher than that of carbenicillin. Roxithromycin enhanced the penetration of sansanmycin to PAl and PA27853 strains through biofilms. PAl and PA27853 biofilms were gradually cleared with the increased dosages of sansanmycin or with the combined sansanmycin and roxithromycin. Conclusion Sub-MIC levels of roxithromycin and sansanmycin substantially inhibit the generation of biofilms and proliferation of bacteria. Therefore, combined antibiotics can be used in treatment of intractable bacterial infection.展开更多
文摘Objective To observe the effects of combined treatment with sansanmycin and macrolides on Pseudomonas aeruginosa and formation of biofilm. Methods Micro-dilution method was used to determine the minimal inhibitory concentrations (MICs) of sansanmycin, gentamycin, carbenicillin, polymyxin B, roxithromycin, piperacillin, and tazobactam. PAl and PA27853 biofilms were observed under optical microscope after staining and under SEM after treatment with sansanmycin at different dosages and combined treatment with sansanmycin and roxithromycin. Viable bacteria in PAl and PA27853 biofilms were counted after treatment with sansanmycin at different dosages or combined treatment with sansanmycin and roxithromycin. Results The MIC of sansanmycin was lower than that of gentamycin and polymyxin B, but was higher than that of carbenicillin. Roxithromycin enhanced the penetration of sansanmycin to PAl and PA27853 strains through biofilms. PAl and PA27853 biofilms were gradually cleared with the increased dosages of sansanmycin or with the combined sansanmycin and roxithromycin. Conclusion Sub-MIC levels of roxithromycin and sansanmycin substantially inhibit the generation of biofilms and proliferation of bacteria. Therefore, combined antibiotics can be used in treatment of intractable bacterial infection.