In this study, Landsat 5 Thematic Mapper (TM) and SPOT HRV Panchromatic data were analysed to determine the geometry of an active fault segment (the Ganos segment) in Gazikoy-Saros region, west of Marmara Sea, Turkey....In this study, Landsat 5 Thematic Mapper (TM) and SPOT HRV Panchromatic data were analysed to determine the geometry of an active fault segment (the Ganos segment) in Gazikoy-Saros region, west of Marmara Sea, Turkey. Gazikoy-Saros/Ganos segment is a part of North Anatolian Fault Zone (NAFZ). North-Anatolian fault is considered to be one of the most important active strike-slip faults in the world. Thus far in relevant researches based on Gazikoy-Saros segment a single straight fault line representation is used on the fault descriptive geological maps. This study, with the aid of enhanced remotely sensed data aims to reveal the linear details of the NAFZ fault segment, which subsequently were superposed with a Digital Elevation Model (DEM) data. Respectively, using these data the surface geometry expression of Gazikoy-Saros fault segment was detailed and remapped. According to the results of the analysis two small releasing steps were identified on this segment. The first one is situated between Mürseli and Güzelkoy villages, and the second one is between Mürseli and Yorguc villages. In addition to this, it is found that the fault strike bends approximately 7° further to in south-eastern (SE) direction between Yenikoy and Sofular villages. This angular change was defined with the advantage of multi-angular viewing capability of the multi-satellite sensors and DEM data. The newly generated surface geometry expression of Ganos segment was compared with Global Positioning System (GPS) velocity vectors.展开更多
Thales of Miletus (640?-546 BC) is famous for his prediction of the total solar eclipse in 585 BC. In this paper, the author demonstrate how Thales may have used the same principle for prediction of solar eclipses ...Thales of Miletus (640?-546 BC) is famous for his prediction of the total solar eclipse in 585 BC. In this paper, the author demonstrate how Thales may have used the same principle for prediction of solar eclipses as that used on the Antikythera Mechanism. At the SEAC conference in Alexandria in 2009, the author presented the paper "Ten solar eclipses show that the Antikythera Mechanism was constructed for use on Sicily." The best defined series of exeligmos cycles started in 243 BC during the lifetime of Archimedes (287-212 BC) from Syracuse. The inscriptions on the Antikythera Mechanism were made in 100-150 BC and the last useful exeligmos started in 134 BC. The theory for the motion of the moon was from Hipparchus (ca 190-125 BC). A more complete investigation of the solar eclipses on the Antikythera Mechanism reveals that the first month in the first saros cycle started with the first new moon after the winter solstice in 542 BC. Four solar eclipses 537-528 BC, from the first saros cycle, and three one exeligmos cycle later, 487-478 BC, are preserved and may have been recorded in Croton by Pythagoras (ca 575-495 BC) and his school.展开更多
文摘In this study, Landsat 5 Thematic Mapper (TM) and SPOT HRV Panchromatic data were analysed to determine the geometry of an active fault segment (the Ganos segment) in Gazikoy-Saros region, west of Marmara Sea, Turkey. Gazikoy-Saros/Ganos segment is a part of North Anatolian Fault Zone (NAFZ). North-Anatolian fault is considered to be one of the most important active strike-slip faults in the world. Thus far in relevant researches based on Gazikoy-Saros segment a single straight fault line representation is used on the fault descriptive geological maps. This study, with the aid of enhanced remotely sensed data aims to reveal the linear details of the NAFZ fault segment, which subsequently were superposed with a Digital Elevation Model (DEM) data. Respectively, using these data the surface geometry expression of Gazikoy-Saros fault segment was detailed and remapped. According to the results of the analysis two small releasing steps were identified on this segment. The first one is situated between Mürseli and Güzelkoy villages, and the second one is between Mürseli and Yorguc villages. In addition to this, it is found that the fault strike bends approximately 7° further to in south-eastern (SE) direction between Yenikoy and Sofular villages. This angular change was defined with the advantage of multi-angular viewing capability of the multi-satellite sensors and DEM data. The newly generated surface geometry expression of Ganos segment was compared with Global Positioning System (GPS) velocity vectors.
文摘Thales of Miletus (640?-546 BC) is famous for his prediction of the total solar eclipse in 585 BC. In this paper, the author demonstrate how Thales may have used the same principle for prediction of solar eclipses as that used on the Antikythera Mechanism. At the SEAC conference in Alexandria in 2009, the author presented the paper "Ten solar eclipses show that the Antikythera Mechanism was constructed for use on Sicily." The best defined series of exeligmos cycles started in 243 BC during the lifetime of Archimedes (287-212 BC) from Syracuse. The inscriptions on the Antikythera Mechanism were made in 100-150 BC and the last useful exeligmos started in 134 BC. The theory for the motion of the moon was from Hipparchus (ca 190-125 BC). A more complete investigation of the solar eclipses on the Antikythera Mechanism reveals that the first month in the first saros cycle started with the first new moon after the winter solstice in 542 BC. Four solar eclipses 537-528 BC, from the first saros cycle, and three one exeligmos cycle later, 487-478 BC, are preserved and may have been recorded in Croton by Pythagoras (ca 575-495 BC) and his school.